Journal of Statistical Physics

, Volume 83, Issue 5–6, pp 1165–1181 | Cite as

Time-periodic spatial chaos in the complex Ginzburg-Landau equation

  • M. Bazhenov
  • M. Rabinovich
  • L. Rubchinsky


The phenomenon of time-periodic evolution of spatial chaos is investigated in the frames of one- and two-dimensional complex Ginzburg-Landau equations. It is found that there exists a region of the parameters in which disordered spatial distribution of the field behaves periodically in time; the boundaries of this region are determined. The transition to the regime of spatiotemporal chaos is investigated and the possibility of describing spatial disorder by a system of ordinary differential equations is analyzed. The effect of the size of the system on the shape and period of oscillations is investigated. It is found that in the two-dimensional case the regime of time-periodic spatial disorder arises only in a narrow strip, the critical width of which is estimated. The phenomenon investigated in this paper indicates that a family of limit cycles with finite basins exists in the functional phase space of the complex Ginzburg-Landau equation in finite regions of the parameters.

Key Words

Spatial disorder complex Ginzburg-Landau equation extended systems nonlinear nonequilibrium medium synchronization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Bazhenov, M. I. Rabinovich, and A. L. Fabrikant, InProceedings of the KIT International Workshop on the Physics of Pattern Formation in Complex Dissipative Systems, S. Kai, ed. (World Scientific, Singapore, 1992), p. 361.Google Scholar
  2. 2.
    Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence, (Springer-Verlag, Berlin, 1984).Google Scholar
  3. 3.
    A. S. Newell,Lect. Appl. Math. 15:157 (1974).Google Scholar
  4. 4.
    H. Sakaguchi,Prog. Theor. Phys. 84:792 (1990).Google Scholar
  5. 5.
    L. Gill,Nonlinearity 4:1213 (1991).Google Scholar
  6. 6.
    B. I. Shraiman, A. Pumir, W. Saarloos, P. C. Hohenberg, H. Chate, and M. Holen,Physica D 57:241 (1992).Google Scholar
  7. 7.
    M. V. Bazhenov, M. I. Rabinovich, and A. L. Fabrikant,Phys. Lett. A 163:87 (1992).Google Scholar
  8. 8.
    H. Chate,Nonlinearity 7:185 (1994).Google Scholar
  9. 9.
    M. C. Cross and P. C. Hohenberg,Rev. Mod. Phys. 65(3):851 (1993).Google Scholar
  10. 10.
    K. Nozaki and N. Bekki,J. Phys. Soc. Jpn. 53:1581 (1984).Google Scholar
  11. 11.
    P. S. Hagan,SIAM J. Appl. Math. 42:762 (1982).Google Scholar
  12. 12.
    I. Aranson, L. Kramer, S. Popp, O. Stiller, and A. Weber,Phys. Rev. Lett. 70:3880 (1993).Google Scholar
  13. 13.
    A. Weber, L. Kramer, I. S. Aranson, and L. Aranson,Phys. Rev. A 46:R2992 (1992).Google Scholar
  14. 14.
    H. Sakaguchi,Prog. Theor. Phys. 85:417 (1991).Google Scholar
  15. 15.
    I. Arnson, L. Kramer, and A. Weber,Phys. Rev. Lett. 72:2316 (1994).Google Scholar
  16. 16.
    S. A. Orszag,Stud. Appl. Math. 20:293 (1971). C. Canuto, M. J. Hussaini, A. Quarteroni, and T. A. Zand,Spectral Methods in Fluid Dynamics (Springer, Berlin, 1988).Google Scholar
  17. 17.
    A. M. Fraser and H. L. Swinney,Phys. Rev. A 33:1134 (1986).Google Scholar
  18. 18.
    M. Bazhenov and M. Rabinovich,Physica D 73:318 (1994).Google Scholar
  19. 19.
    F. H. Willeboordse and K. Kaneko,Phys. Rev. Lett. 73:533 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. Bazhenov
    • 1
  • M. Rabinovich
    • 1
    • 2
  • L. Rubchinsky
    • 1
    • 2
    • 3
  1. 1.Institute of Applied PhysicsRussian Academy of ScienceNizhny NovgorodRussia
  2. 2.Institute for Nonlinear ScienceUniversity of California at San DiegoLa Jolla
  3. 3.Physics DepartmentUniversity of California at San DiegoLa Jolla

Personalised recommendations