Journal of Statistical Physics

, Volume 83, Issue 5–6, pp 1021–1065 | Cite as

Moment closure hierarchies for kinetic theories

  • C. David Levermore
Articles

Abstract

This paper presents a systematicnonperturbative derivation of a hierarchy of closed systems of moment equations corresponding to any classical kinetic theory. The first member of the hierarchy is the Euler system, which is based on Maxwellian velocity distributions, while the second member is based on nonisotropic Gaussian velocity distributions. The closure proceeds in two steps. The first ensures that every member of the hierarchy is hyperbolic, has an entropy, and formally recovers the Euler limit. The second involves modifying the collisional terms so that members of the hierarchy beyound the second also recover the correct Navier-Stokes behavior. This is achieved through the introduction of a generalization of the BGK collision operator. The simplest such system in three spatial dimensions is a “14-moment” closure, which also recovers the behavior of the Grad “13-moment” system when the velocity distributions lie near local Maxwellians. The closure procedure can be applied to a general class of kinetic theories.

Key Words

Kinetic theory moment closures hyperbolic systems entropy, BGK 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Arkeryd, R. Esposito, and M. Pulverenti, the Boltzmann equation for weakly inhomogeneous data,Commun. Math. Phys. 111:393–407 (1987).Google Scholar
  2. 2.
    C. Bardos, F. Golse, and D. Levermore, Fluid dynamic limits of kinetic equations I: Formal derivations,J. Stat. Phys. 63:323–344 (1991).Google Scholar
  3. 3.
    P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems,Phys. Rev. 94:511–524 (1954).Google Scholar
  4. 4.
    G. A. Bird,Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, (1994).Google Scholar
  5. 5.
    A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation,Sov. Phys. Dokl. 27:29–31 (1982).Google Scholar
  6. 6.
    L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen,Sitzungsber. Akad. Wiss. Wien 66:275–370 (1982); English transl., Further studies on the thermal equilibrium of gas molecules, inKinetic Theory, Vol. 2, S. G. Brush, ed., (Pergamon Press, London, 1966), pp. 88–174.Google Scholar
  7. 7.
    C. Cercignani,The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).Google Scholar
  8. 8.
    G. Q. Chen, C. D. Levermore, and T. P. Liu, Hyperbolic conservation laws with Stiff relaxation terms and entropy,Commun. Pure Appl. Math. 47:787–830 (1994).Google Scholar
  9. 9.
    L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations,Arch. Rat. Mech. Anal. 123:387–404 (1994).Google Scholar
  10. 10.
    W. Dreyer, Maximisation of the entropy in non-equilibrium,J. Phys. A: Math. Gen. 20:6505–6517 (1987).Google Scholar
  11. 11.
    T. Elmroth, Global bounds of moments of solutions of the Boltzmann equation for forces of infinite range,Arch. Rat. Mech. Anal. 82:1–12 (1983).Google Scholar
  12. 12.
    K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension,Proc. Natl. Acad. Sci. USA 68:1686–1688 (1971).Google Scholar
  13. 13.
    S. K. Godunov, An interesting class of quasilinear systems,Sov. Math. Dokl. 2:947–949 (1961).Google Scholar
  14. 14.
    F. Golse and F. Poupoud. Stationary solutions of the linearized Boltzmann equation in a half-space,Math. Meth. Appl. Sci. 11:483–502 (1989).Google Scholar
  15. 15.
    T. I. Gombosi, C. P. T. Groth, P. L. Roe, and S. L. Brown, 35-moment closure for rarefied gases: Derivation, transport equations, and wave structure,Phys. Fluids, submitted (1994).Google Scholar
  16. 16.
    A. N. Gorbin and I. V. Karlin Thermodynamic parameterization,Physica A: Math. Gen. 190:393–404 (1992).Google Scholar
  17. 17.
    A. N. Gorbin and I. V. Karlin Method of invariant manifolds and the regularization of acoustic spectra,Transport Theory Stat. Phys. 23:559–632.Google Scholar
  18. 18.
    H. Grad, On the kinetic theory of rarefied gases,Commun. Pure Appl. Math. 2:331–407 (1949).Google Scholar
  19. 19.
    C. P. T. Groth and C. D. Levermore, Beyond the Navier-Stokes approximation: Transport corrections to the Gaussian closure, in preparation (1996).Google Scholar
  20. 20.
    A. Harten, On the symmetric form of systems of conservation laws with entropy,J. Comp. Phys. 49:151–164 (1983).Google Scholar
  21. 21.
    A. Harten, P. D. Lax, C. D. Levermore, and W. J. Morokoff, Convex entropies and hyperbolicity for general Euler equations,SIAM J. Num. Anal., submitted (1995).Google Scholar
  22. 22.
    F. Hertweck, Allgemeine 13-Momenten-Näherung zur Fokker-Planck Gleichung eins Plasmas,Z. Naturforsch. 20a:1243–1255 (1965).Google Scholar
  23. 23.
    L. H. Holway, Kinetic theory of shock structure using an ellipsoidal distribution function, inRarefied Gas Dynamics, Vol. I, C. L. Brundin, ed. (Academic Press, New York, 1966), pp. 759–784.Google Scholar
  24. 24.
    S. Jin and C. D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms,J. Comp. Phys., accepted (1996).Google Scholar
  25. 25.
    P. D. Lax,Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (SIAM, Philadelphia, 1973).Google Scholar
  26. 26.
    C. D. Levermore, Entropic convergence and the linearized limit for the Boltzmann equation,Commun. Partial Differential Equations 18:1231–1248 (1993).Google Scholar
  27. 27.
    C. D. Levermore, W. J. Morokoff, and B. T. Nadiga, Moment realizability and the validity of the Navier-Stokes approximation for rarefied gas dynamics,Phys. Fluids, submitted (1995).Google Scholar
  28. 28.
    C. D. Levermore and W. J. Morokoff, The Gaussian closure for the Boltzmann equation,SIAM J. Appl. Math., submitted (1996).Google Scholar
  29. 29.
    C. D. Levermore and B. A. Wagner, Robust fluid dynamical closures of the Broadwell model,Phys. Lett. A 174:220–228 (1993).Google Scholar
  30. 30.
    A. Majda,Compressible Fluid Flow and Systems of conservation Laws in Several Space Dimensions (Springer-Verlag, New York, 1984).Google Scholar
  31. 31.
    J. C. Maxwell, On the dynamical theory of gases,Phil. Trans. R. Soc. Lond. 157:49–88 (1866); also inThe Scientific Papers of James Clerk Maxwell, Vol. 2 (Dover, New York, 1965), pp. 26–78.Google Scholar
  32. 32.
    M. Mock, Systems of conservation laws of mixed type.J. Differential Equations 37:70–88 (1980).Google Scholar
  33. 33.
    I. Müller and T. Ruggeri,Extended Thermodynamics (Springer-Verlag, New York, 1993).Google Scholar
  34. 34.
    P. Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion,Phys. Rev. A 40:7193–7196 (1989).Google Scholar
  35. 35.
    B. Wennberg, On moments and uniqueness for solutions to the space homogeneous Boltzmann equation,Trans. Theory Stat. Phys. 23:533–539 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • C. David Levermore
    • 1
  1. 1.Department of Mathematics and Program in Applied MathematicsUniversity of ArizonaTucson

Personalised recommendations