Advertisement

Pharmacy World and Science

, Volume 16, Issue 6, pp 348–353 | Cite as

Rectal administration of nicomorphine in patients improves biological availability of morphine and its glucuronide conjugates

  • P. M. Koopman-Kimenai
  • T. B. Vree
  • L. H. D. J. Booij
  • R. Dirksen
Articles
  • 32 Downloads

Abstract

The pharmacokinetics of 30 mg nicomorphine after rectal administration with a suppository are described in 8 patients under combined general and epidural anaesthesia. No nicomorphine or 6-mononicotinoylmorphine could be detected in the serum. Morphine appeared almost instantaneously with a lag-time of 8 min and had a final elimination half-life of 1.48±0.48 h. Morphine was metabolized to morphine-3-glucuronide and morphine-6-glucuronide. These glucuronide conjugates appeared after a lag-time of 12 min and the half-life of these two glucuronide conjugates was similar: about 2.8 h (P>0.8). The glucuronide conjugate of 6-mononicotinoylmorphine was not detected. In the urine only morphine and its glucuronides were found. The renal clearance value for morphine was 162 m·min−1 and for the glucuronides 81 ml·min−1. This study shows that administration of a suppository with 30 mg nicomorphine gives an excellent absolute bioavailability of morphine and its metabolites of 88%. The lipid-soluble prodrug nicomorphine is quickly absorbed and immediately hydrolysed to morphine.

Keywords

Administration, rectal Anesthesia Biological availability Chromatography, high pressure liquid Metabolites Nicomorphine Pharmacokinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dirksen R, Van de Pol F, Nijhuis GMM. Mechanisms of effectiveness of intravenous nicomorphine and its hydrolysis products in rats. In: Kopera H, Booy LHDJ, editors. Proceedings of the Vilan® workshop; Graz 1987; 1988:10–6.Google Scholar
  2. 2.
    Pinckaers JWM, Nijhuis GMM, Dirksen R. Postoperative nicomorphine analgesia by spinal or epidural application. Anesth Intensivmed 1982;152:16–24.Google Scholar
  3. 3.
    Koopman-Kimenai PM, Vree TB, Cress-Tijhuis MW, Booij LHDJ, Drijkoningen G. High performance liquid chromatography and preliminary pharmacokinetics of nicomorfine and its metabolites 3-nicotinoyl- and 6-nicotinoylmorfine and morfine. J Chromatogr 1987;416:382–7.PubMedGoogle Scholar
  4. 4.
    Proost JH, Meijer DKF. MW/PHARM, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Comput Biol Med 1992;22:155–63.PubMedGoogle Scholar
  5. 5.
    Koopman-Kimenai PM, Vree TB, Booij LHDJ, Dirksen R, Nijhuis GMM. Pharmacokinetics of intramuscular nicomorphine and its metabolites in man. Eur J Clin Pharmacol 1991;41:375–8.PubMedGoogle Scholar
  6. 6.
    Koopman-Kimenai PM, Vree TB, Hasenbos MAWM, Weber EWG, Verweij-van Wissen CPWGM, Booij LHDJ. Pharmacokinetics of nicomorphine and its metabolites in man after epidural administration. Pharm Weekbl Sci 1991;13:142–7.PubMedGoogle Scholar
  7. 7.
    Koopman-Kimenai PM, Vree TB, Booij LHDJ, Dirksen R, Nijhuis GMM. Pharmacokinetics of intravenously administered nicomorphine and its metabolites in man. Eur J Anaesthesiol 1993;10:125–32.PubMedGoogle Scholar
  8. 8.
    Garrett ER, Gürkan T. Pharmacokinetics of morphine and its surrogates I: comparisons of sensitive assays of morphine in biological fluids and application of morphine pharmacokinetics in the dog. J Pharm Sci 1978;67:1512–7.PubMedGoogle Scholar
  9. 9.
    Garrett ER, Jackson AJ. Pharmacokinetics of morphine and its surrogates III: morphine and morphine 3-monoglucuronide pharmacokinetics in the dog as a function of dose. J Pharm Sci 1979;68:753–71.PubMedGoogle Scholar
  10. 10.
    Boerner U, Abbott S, Roe RL. The metabolism of morphine and heroin in man. Drug Metab Rev 1975;4:39–73.PubMedGoogle Scholar
  11. 11.
    SÄwe J, Kager L, Svensson J-O, Rane A. Oral morphine in cancer patients:in vivo kinetics andin vitro hepatic glucuronidation. Br J Clin Pharmacol 1985;19:495–501.PubMedGoogle Scholar
  12. 12.
    Smith MT, Watt JA, Cramond T. Morphine-3-glucuronide — a potent antagonist of morphine analgesia. Life Sci 1990;47: 579–86.PubMedGoogle Scholar
  13. 13.
    Gong Q-L, Hedner J, Björkman R, Nordberg G. Antinociceptive and ventilatory effects of the morphine metabolites: morphine-6-glucuronide and morphine-3-glucuronide. Eur J Pharmacol 1991;193:47–56.PubMedGoogle Scholar
  14. 14.
    Osborne R, Joel S, Trew D, Slevin M. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 1990;47:12–9.PubMedGoogle Scholar
  15. 15.
    Shimomura K, Kamata O, Ueki S, Ida S, Oguri K, Yoshimura H, Tsukamoto H. Analgesic effect of morphine glucuronides. Tohoku J Exp Med 1971;105:45–52.PubMedGoogle Scholar
  16. 16.
    Hanna MH, Peat SJ, Knibb A, Fung C. Disposition of morphine-6-glucuronide and morphine in healthy volunteers. Br J Anaest 1991;66:103–7.Google Scholar
  17. 17.
    Hanks GW, Wand PJ. Enterohepatic circulation of opioid drugs. Is it clinically relevant in the treatment of cancer patients. Clin Pharmacokinet 1989;17:65–8.PubMedGoogle Scholar
  18. 18.
    Dahlström BE, Paalzow LK. Pharmacokinetic interpretation of the enterohepatic recirculation and first pass elimination of morphine in the rat. J Pharmacokinet Biopharm 1978;6:505–19.PubMedGoogle Scholar
  19. 19.
    Leslie ST, Rhodes A, Black FM. Controlled release morphine sulphate tablets, a study in normal volunteers. Br J Clin Pharmacol 1980;9:531–4.PubMedGoogle Scholar
  20. 20.
    Osborne R, Joel S, Grebenik K, Trew D, Slevin M. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther 1993;54:158–67.PubMedGoogle Scholar
  21. 21.
    Somogyi AA, Nation RL, Olweny C, Tsirgiotis P, Van Crugten J, Milne RW, et al. Plasma concentrations and renal clearance of morphine, morphine-3-glucuronide and morphine-6-glucuronide in cancer patients receiving morphine. Clin Pharmacokinet 1993;24:413–20.PubMedGoogle Scholar
  22. 22.
    D'Honneur G, Gilton A, Sandouk P, Scherrmann JM, Duvaldestin P. Plasma and cerebrospinal fluid concentrations of morphine and morphine glucuronides after oral morphine. Anaesthesiology 1994;81:87–93.Google Scholar
  23. 23.
    Chan GLC, Matzke GR. Effects of renal insufficiency on the pharmacokinetics and pharmacodynamics of opioid analgesics. Drug Intell Clin Pharm 1987;21:773–83.PubMedGoogle Scholar
  24. 24.
    Horton TL, Pollack GM. Enterohepatic recirculation and renal metabolism of morphine in the rat. J Pharm Sci 1991; 80:1147–52.PubMedGoogle Scholar
  25. 25.
    Iwamoto K, Klaassen CD. First pass effect of morphine in rats. J Pharm Exp Ther 1977;200:236–44.Google Scholar
  26. 26.
    Koopman-Kimenai PM, Vree TB, Booij LHDJ, Dirksen R. Pharmacokinetics of intravenously administered nicomorphine and its metabolites and glucuronide conjugates in surgical patients. Drug Invest 1994;7:63–73.Google Scholar
  27. 27.
    Jonsson T, Christensen CB, Jordening H, FrØlund C. The bioavailability of rectally administered morphine. Pharmacol Toxicol 1988;62:203–5.PubMedGoogle Scholar
  28. 28.
    Westerling D, Lindahl S, Andersson KE, Andersson A. Absorption and bioavailability of rectally administered morphine in woman. Eur J Clin Pharmacol 1982;23:59–64.PubMedGoogle Scholar
  29. 29.
    Westerling D, Andersson KE. Rectal administration of morphine hydrogel: absorption and bioavailability in woman. Acta Anaesth Scand 1984;28:540–3.PubMedGoogle Scholar
  30. 30.
    Babul N, Darke AC. Disposition of morphine and its glucuronide metabolites after oral and rectal administration: evidence of route specificity. Clin Pharmacol Ther 1993;54: 286–92.PubMedGoogle Scholar
  31. 31.
    Ellison NM, Lewis GO. Plasma concentrations following single doses of morphine sulfate in oral solutions and rectal suppository. Clin Pharm 1984;3:614–7.PubMedGoogle Scholar
  32. 32.
    Kaiko RF, Fitzmartin RD, Thomas GB, Goldenheim PD. The bioavailability of morphine in controlled-release 30-mg tablets per rectum compared with immediately-release 30-mg rectal suppositories and controlled-release 30-mg oral tablets. Pharmacotherapy 1992;12:107–13.PubMedGoogle Scholar
  33. 33.
    Moolenaar F, Leuverman A, Schoonen BJM. Bioavailability of morphine from suppositories. Int J Pharm 1988;45:161–4.Google Scholar
  34. 34.
    Greven J. Renal transport of drugs. In: Greger R, Lang F, Silbernagl S, editors. Renal transport of organic substances. Berlin: Springer Verlag, 1981:262–77.Google Scholar
  35. 35.
    Waltrous WM, May DG, Fujimoto JM. Mechanism of the renal tubular transport of morphine and morphine ethereal sulfate in the chicken. J Pharmacol Exp Ther 1970;172:224–9.PubMedGoogle Scholar
  36. 36.
    Van Crugten J, Sallustio B, Nation RL, Somogyi AA. Renal tubular transport of morphine-6-glucuronide and morphine-3-glucuronide in the isolated perfused rat kidney. Drug Metab Dispos 1991;19:1087–92.PubMedGoogle Scholar
  37. 37.
    Carrupt P, Testa B, Bechalany A, El Tayar N, Descas P, Perrisoud D. Morphine-6-glucuronide and morphine-3-glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem 1991;34:1272–5.PubMedGoogle Scholar
  38. 38.
    Hasselström J, SÄwe J. Morphine pharmacokinetics and metabolism in humans. Clin Pharmacokinet 1993;24:344–54.PubMedGoogle Scholar
  39. 39.
    Patel N, Joel SP, Lam W, Slevin ML. Is morphine-3,6-diglucuronide an important metabolite of morphine or morphine-6-glucuronide? [abstract]. 7th World Congress on Pain; 1993 Aug 22–27; Paris. Seattle: IASP Publications, 1993;530:1405.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1994

Authors and Affiliations

  • P. M. Koopman-Kimenai
    • 1
  • T. B. Vree
    • 1
    • 2
  • L. H. D. J. Booij
    • 2
  • R. Dirksen
    • 2
  1. 1.Department of Clinical PharmacyAcademic Hospital Nijmegen Sint RadboudGA Nijmegenthe Netherlands
  2. 2.Institute of AnaesthesiologyAcademic Hospital Nijmegen Sint Radboudthe Netherlands

Personalised recommendations