Journal of Statistical Physics

, Volume 80, Issue 3–4, pp 661–754

Critical exponents, hyperscaling, and universal amplitude ratios for two- and three-dimensional self-avoiding walks

  • Bin Li
  • Neal Madras
  • Alan D. Sokal
Articles

Abstract

We make a high-precision Monte Carlo study of two- and three-dimensional self-avoiding walks (SAWs) of length up to 80,000 steps, using the pivot algorithm and the Karp-Luby algorithm. We study the critical exponentsv and 2Δ4γ as well as several universal amplitude ratios; in particular, we make an extremely sensitive test of the hyperscaling relationdv = 2Δ4γ. In two dimensions, we confirm the predicted exponentv=3/4 and the hyperscaling relation; we estimate the universal ratios <Rg2>/<Re2>=0.14026±0.00007, <Rm2>/<Re2>=0.43961±0.00034, and Ψ*=0.66296±0.00043 (68% confidence limits). In three dimensions, we estimatev=0.5877±0.0006 with a correctionto-scaling exponentΔ1=0.56±0.03 (subjective 68% confidence limits). This value forv agrees excellently with the field-theoretic renormalization-group prediction, but there is some discrepancy forΔ1. Earlier Monte Carlo estimates ofv, which were ≈0.592, are now seen to be biased by corrections to scaling. We estimate the universal ratios <Rg2>/<Re2>=0.1599±0.0002 and Ψ*=0.2471±0.0003; since Ψ*>0, hyperscaling holds. The approach to Ψ* is from above, contrary to the prediction of the two-parameter renormalization-group theory. We critically reexamine this theory, and explain where the error lies. In an appendix, we prove rigorously (modulo some standard scaling assumptions) the hyperscaling relationdv = 2Δ4γ for two-dimensional SAWs.

Key Words

Self-avoiding walk polymer critical exponent hyperscaling universal amplitude ratio second virial coefficient interpenetration ratio renormalization group two-parameter theory Monte Carlo pivot algorithm Karp-Luby algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Madras and G. Slade,The Self-Avoiding Walk (Birkhäuser, Boston, 1993).Google Scholar
  2. 2.
    P. G. de Gennes,Phys. Lett. A 38:339 (1972).Google Scholar
  3. 3.
    J. des Cloizeaux,J. Phys. (Paris)36:281 (1975).Google Scholar
  4. 4.
    M. Daoud, J. P. Cotton, B. Farnoux, G. Jannink, G. Sarma, H. Benoit, R. Duplessix, C. Picot, and P. G. de Gennes,Macromolecules 8:804 (1975).Google Scholar
  5. 5.
    V. J. Emery,Phys. Rev. B 11:239 (1975).Google Scholar
  6. 6.
    C. Aragão de Carvalho, S. Caracciolo, and J. Fröhlich,Nucl. Phys. B 215[FS7]:209 (1983).Google Scholar
  7. 7.
    R. Fernández, J. Fröhlich, and A. D. Sokal,Random Walks, Critical Phenomena, and Trivality in Quantum Field Theory (Springer-Verlag, Berlin, 1992).Google Scholar
  8. 8.
    M. Lal,Mol. Phys. 17:57 (1969).Google Scholar
  9. 9.
    B. MacDonald, N. Jan, D. L. Hunter, and M. O. Steinitz,J. Phys. A: Math. Gen. 18:2627 (1985).Google Scholar
  10. 10.
    N. Madras and A. D. Sokal,J. Stat. Phys. 50:109 (1988).Google Scholar
  11. 11.
    K. F. Freed,Renormalization Group Theory of Macromolecules (Wiley, New York, 1987).Google Scholar
  12. 12.
    J. des Cloizeaux and G. Jannink,Polymers in Solution: Their Modelling and Structure (Oxford University Press, Oxford, 1990).Google Scholar
  13. 13.
    B. G. Nickel,Macromolecules 24:1358 (1991).Google Scholar
  14. 14.
    A. D. Sokal,Europhys. Lett. 27:661 (1994).Google Scholar
  15. 15.
    A. D. Sokal, Fundamental problems in the static scaling behavior of high-molecularweight polymers in dilute solution I. Critique of two-parameter theories, In preparation.Google Scholar
  16. 16.
    B. Widom,J. Chem. Phys. 43:3892 (1965).Google Scholar
  17. 17.
    M. E. Fisher,Rep. Prog. Phys. 30:615 (1967).Google Scholar
  18. 18.
    G. Stell,J. Chem. Phys. 51:2037 (1969).Google Scholar
  19. 19.
    N. S. Snider,J. Chem. Phys. 54:4587 (1971).Google Scholar
  20. 20.
    B. Widom,Physica 73:107 (1974).Google Scholar
  21. 21.
    M. E. Fisher, inCollective Properties of Physical Systems, B. Lundqvist and S. Lundqvist, eds. (Academic Press, New York, 1974).Google Scholar
  22. 22.
    C. K. Hall,J. Stat. Phys. 13:157 (1975).Google Scholar
  23. 23.
    T. Hara and G. Slade,Commun. Math. Phys. 147:101 (1992).Google Scholar
  24. 24.
    T. Hara and G. Slade,Rev. Math. Phys. 4:235 (1992).Google Scholar
  25. 25.
    T. Hara and G. Slade,Commun. Math. Phys. 128:333 (1990).Google Scholar
  26. 26.
    T. Hara,Prob. Theory Related Fields 86:337 (1990).Google Scholar
  27. 27.
    W. J. Camp, D. M. Saul, J. P. Van Dyke, and M. Wortis,Phys. Rev. B 14: 3990 (1976).Google Scholar
  28. 28.
    G. A. Baker Jr.,Phys. Rev. B 15:1552 (1977).Google Scholar
  29. 29.
    B. G. Nickel and B. Sharpe,J. Phys. A 12:1819 (1979).Google Scholar
  30. 30.
    J. J. Rehr,J. Phys. A 12:L179 (1979).Google Scholar
  31. 31.
    J. Zinn-Justin,J. Phys. (Paris)40:969 (1979).Google Scholar
  32. 32.
    B. Nickel,Physica 106A:48 (1981).Google Scholar
  33. 33.
    B. G. Nickel, inPhase Transitions, M. Lévy, J.-C. LeGuillou, and J. Zinn-Justin, eds. (Plenum Press, New York, 1982).Google Scholar
  34. 34.
    R. Roskies,Phys. Rev. B 23:6037 (1981).Google Scholar
  35. 35.
    R. Z. Roskies,Phys. Rev. B 24:5305 (1981).Google Scholar
  36. 36.
    J. Zinn-Justin,J. Phys. (Paris)42:783 (1981).Google Scholar
  37. 37.
    G. A. Baker jr. and J. M. Kincaid,J. Stat. Phys. 24:469 (1981).Google Scholar
  38. 38.
    J.-H. Chen, M. E. Fisher, and B. G. Nickel,Phys. Rev. Lett. 48:630 (1982).Google Scholar
  39. 39.
    J. Adler, M. Moshe, and V. Privman,Phys. Rev. B 26:3958 (1982).Google Scholar
  40. 40.
    M. Ferer and M. J. Velgakis,Phys. Rev. B 27:2839 (1983).Google Scholar
  41. 41.
    M. E. Fisher and J.-H. Chen,J. Phys. (Paris)46:1645 (1985).Google Scholar
  42. 42.
    A. J. Guttmann,Phys. Rev. B 33:5089 (1986).Google Scholar
  43. 43.
    R. Schrader and E. Tränkle,J. Stat. Phys. 25:269 (1981).Google Scholar
  44. 44.
    B. A. Freedman and G. A. Baker Jr.,J. Phys. A 15:L715 (1982).Google Scholar
  45. 45.
    M. N. Barber, R. B. Pearson, D. Toussaint, and J. L. Richardson,Phys. Rev. B 32: 1720 (1985).Google Scholar
  46. 46.
    K. Binder, M. Nauenberg, V. Privman, and A. P. Young,Phys. Rev. B 31:1498 (1985).Google Scholar
  47. 47.
    A. Hoogland, A. Compagner, and H. W. J. Blöte,Physica A 132:593 (1985).Google Scholar
  48. 48.
    G. A. Baker Jr. and N. Kawashima, Renormalized coupling constant for the three dimensional Ising model, Los Alamos preprint (1994).Google Scholar
  49. 49.
    M. Aizenman,Commun. Math. Phys. 86:1 (1982).Google Scholar
  50. 50.
    J. Glimm and A. Jaffe,Ann. Inst. Henri Poincaré A 22:97 (1975).Google Scholar
  51. 51.
    R. Schrader,Phys. Rev. B 14:172 (1976).Google Scholar
  52. 52.
    R. Schrader,Commun. Math. Phys. 49:131 (1976).Google Scholar
  53. 53.
    A. D. Sokal,Ann. Inst. Henri Poincaré A 37:317 (1982).Google Scholar
  54. 54.
    G. A. Baker Jr., inPhase Transitions and Critical Phenomena, Vol. 9, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1984).Google Scholar
  55. 55.
    M. E. Fisher, inRenormalization Group in Critical Phenomena and Quantum Fields, J. D. Gunton and M. S. Green, eds. (Temple University, Philadelphia, 1974).Google Scholar
  56. 56.
    F. J. Wegner and E. K. Riedel,Phys. Rev. B 7:248 (1973).Google Scholar
  57. 57.
    S.-K. Ma,Modern Theory of Critical Phenomena (Benjamin, Reading, Massachusetts, 1976).Google Scholar
  58. 58.
    D. J. Amit and L. Peliti,Ann. Phys. 140:207 (1982).Google Scholar
  59. 59.
    M. E. Fisher, inCritical Phenomena (Stellenbosh 1982), F. J. W. Hahne, ed. (Springer-Verlag, Berlin, 1983), pp. 1–139.Google Scholar
  60. 60.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal,J. Stat. Phys. 72:879 (1993).Google Scholar
  61. 61.
    K. Gawedzki and A. Kupiainen,Commun. Math. Phys. 99:197 (1985).Google Scholar
  62. 62.
    K. Gawedzki and A. Kupiainen,Nucl. Phys. B 257[FS14]:474 (1985).Google Scholar
  63. 63.
    K. Gawedzki and A. Kupiainen,Commun. Math. Phys. 102:1 (1985).Google Scholar
  64. 64.
    J. Feldman, J. Magnen, V. Rivasseau, and R. Sénéor,Commun. Math. Phys. 103: 67 (1986).Google Scholar
  65. 65.
    K. Gawedzki and A. Kupiainen,Commun. Math. Phys. 89:191 (1983).Google Scholar
  66. 66.
    K. Gawedzki and A. Kupiainen,J. Stat. Phys. 35:267 (1984).Google Scholar
  67. 67.
    K. Gawedzki and A. Kupiainen,Commun. Math. Phys. 106:533 (1986).Google Scholar
  68. 68.
    G. Felder,Commun. Math. Phys. 102:139 (1985).Google Scholar
  69. 69.
    T. Niemeijer and J. M. J. van Leuuwen, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).Google Scholar
  70. 70.
    R. H. Swendsen, inPhase Transitions, M. Lévy, J.-C. LeGuillou, and J. Zinn-Justin, eds. (Plenum Press, New York, 1982).Google Scholar
  71. 71.
    E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).Google Scholar
  72. 72.
    D. S. Gaunt and A. J. Guttmann, inPhase Transitions and Critical Phenomena, Vol. 3, C. Domb and A. J. Green, eds. (Academic Press, New York, 1974).Google Scholar
  73. 73.
    A. J. Guttmann, inPhase Transitions and Critical Phenomena, Vol. 13, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1989).Google Scholar
  74. 74.
    J. Adler, M. Moshe, and V. Privman, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Israel Physical Society, 1983).Google Scholar
  75. 75.
    V. Privman,J. Phys. A. 16:3097 (1983).Google Scholar
  76. 76.
    M. N. Barber, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983).Google Scholar
  77. 77.
    J. L. Cardy, ed.,Finite-Size Scaling (North-Holland, Amsterdam, 1988).Google Scholar
  78. 78.
    V. Privman, ed.,Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).Google Scholar
  79. 79.
    A. D. Sokal, Monte Carlo methods in statistical mechanics: Foundations and new algorithms, Cours de Troisième Cycle de la Physique en Suisse Romande, Lausanne (June 1989).Google Scholar
  80. 80.
    A. D. Sokal,Nucl. Phys. B (Proc. Suppl.) 20:55 (1991).Google Scholar
  81. 81.
    A. D. Sokal, inQuantum Fields on the Computer, M. Creutz, ed. (World Scientific, Singapore, 1992).Google Scholar
  82. 82.
    S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, and A. D. Sokal, Extrapolating Monte Carlo simulations to infinite volume: finite-size scaling at ζ/L≫1,Phys. Rev. Lett., to appear.Google Scholar
  83. 83.
    A. D. Sokal, inMonte Carlo and Molecular Dynamics Simulations in Polymer Science, K. Binder, ed. (Oxford University Press, Oxford, 1995).Google Scholar
  84. 84.
    A. Baumgärtner and K. Binder,J. Chem. Phys. 71:2541 (1979).Google Scholar
  85. 85.
    S. F. Edwards,Proc. Phys. Soc. Lond. 85:613 (1965).Google Scholar
  86. 86.
    S. R. S. Varadhan, Appendix to K. Symanzik inLocal Quantum Theory, R. Jost, ed. (Academic Press, New York, 1969).Google Scholar
  87. 87.
    J. Westwater,Commun. Math. Phys. 72:131 (1980).Google Scholar
  88. 88.
    J. Westwater,Commun. Math. Phys. 84:459 (1982).Google Scholar
  89. 89.
    A. Bovier, G. Felder, and J. Fröhlich,Nucl. Phys. B 230[FS10]:119 (1984).Google Scholar
  90. 90.
    V. Privman, P. C. Hohenberg, and A. Aharony, inPhase Transitions and Critical Phenomena, Vol. 14, C. Domb and J. L. Lebowitz, eds. (Academic Press, San Diego, 1991).Google Scholar
  91. 91.
    M. Muthukumar and B. G. Nickel,J. Chem. Phys. 80:5839 (1984).Google Scholar
  92. 92.
    J. des Cloizeaux, R. Conte, and G. Jannink,J. Phys. Lett. (Paris)46:L-595 (1985).Google Scholar
  93. 93.
    M. Muthukumar and B. G. Nickel,J. Chem. Phys. 86:460 (1987).Google Scholar
  94. 94.
    A. J. Barrett and B. G. Nickel, Private communication.Google Scholar
  95. 95.
    H. Fujita and T. Norisuye,Macromolecules 18:1637 (1985).Google Scholar
  96. 96.
    K. Huber and W. H. Stockmayer,Macromolecules 20:1400 (1987).Google Scholar
  97. 97.
    H. Fujita,Macromolecules 21:179 (1988).Google Scholar
  98. 98.
    H. Fujita,Polymer Solutions (Elsevier, Amsterdam, 1990).Google Scholar
  99. 99.
    A. J. Liu and M. E. Fisher,J. Stat. Phys. 58:431 (1990).Google Scholar
  100. 100.
    T. Hara, G. Slade, and A. D. Sokal,J. Stat. Phys. 72:479 (1993).Google Scholar
  101. 101.
    J. L. Cardy and A. J. Guttmann,J. Phys. A 26:2485 (1993).Google Scholar
  102. 102.
    G. Slade,Commun. Math. Phys. 110:661 (1987).Google Scholar
  103. 103.
    G. Slade,Ann. Prob. 17:91 (1989).Google Scholar
  104. 104.
    G. Slade,J. Phys. A: Math. Gen. 21:L417 (1988).Google Scholar
  105. 105.
    G. E. Uhlenbeck and G. W. Ford, inStudies in Statistical Mechanics, Vol. I, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1962).Google Scholar
  106. 106.
    J. des Cloizeaux, Private communication cited in E. Brézin, inOrder and Fluctuation in Equilibrium and Nonequilibrium Statistical Mechanics, G. Nichols, G. Dewel, and J. W. Turner, eds. (Wiley-Interscience, New York, 1981).Google Scholar
  107. 107.
    J. C. LeGuillou and J. Zinn-Justin,Phys. Rev. B 21:3976 (1980).Google Scholar
  108. 108.
    J. C. LeGuillou and J. Zinn-Justin,J. Phys. Lett. 46:L-137 (1985).Google Scholar
  109. 109.
    J. C. LeGuillou and J. Zinn-Justin,J. Phys. (Paris)50:1365 (1989).Google Scholar
  110. 110.
    D. B. Murray and B. G. Nickel, Revised estimates for critical exponents for the continuumn-vector model in 3 dimensions, University of Guelph preprint (1991).Google Scholar
  111. 111.
    B. Nienhuis,Phys. Rev. Lett. 49:1062 (1982).Google Scholar
  112. 112.
    B. Nienhuis,J. Stat. Phys. 34:731 (1984).Google Scholar
  113. 113.
    D. S. McKenzie and C. Domb,Proc. Phys. Soc. Lond. 92:632 (1967).Google Scholar
  114. 114.
    F. J. Wegner,Phys. Rev. B 5:4529 (1972).Google Scholar
  115. 115.
    H. E. Staneley,Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971).Google Scholar
  116. 116.
    N. Madras, A. Orlitsky, and L. A. Shepp,J. Stat. Phys. 58:159 (1990).Google Scholar
  117. 117.
    G. Zifferer,Macromolecules 23:3166 (1990).Google Scholar
  118. 118.
    N. Eizenberg and J. Klafter,J. Chem. Phys. 99:3976 (1993).Google Scholar
  119. 119.
    D. E. Knuth,The Art of Computer Programming, Vol. 3 (Addison-Wesley, Reading, Massachusetts, 1973), Section 6.4.Google Scholar
  120. 120.
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms (MIT Press/ McGraw-Hill, Cambridge, Massachusetts/New York, 1990), Chapter 12.Google Scholar
  121. 121.
    K. Suzuki,Bull. Chem. Soc. Japan 41:538 (1968).Google Scholar
  122. 122.
    G. Zifferer,Mol. Simul. 6:103 (1991).Google Scholar
  123. 123.
    S. Redner and P. J. Reynolds,J. Phys. A 14:2679 (1981).Google Scholar
  124. 124.
    A. Berretti and A. D. Sokal,J. Stat. Phys. 40:483 (1985).Google Scholar
  125. 125.
    A. J. Barrett,Macromolecules 18:196 (1985), Section 3.Google Scholar
  126. 126.
    R. M. Karp and M. Luby, In24th IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1983), pp. 56–64.Google Scholar
  127. 127.
    R. M. Karp, M. Luby, and N. Madras,J. Algorithms 10:429 (1989).Google Scholar
  128. 128.
    S. D. Silvey,Statistical Inference (Chapman and Hall, London, 1975).Google Scholar
  129. 129.
    S. Caracciolo, A. J. Guttmann, B. Li, A. Pelissetto, and A. D. Sokal, Correction-to-scaling exponents for two-dimensional self-avoiding walks, in preparation.Google Scholar
  130. 130.
    D. C. Rapaport,J. Phys. A 18:L39 (1985).Google Scholar
  131. 131.
    S. Caracciolo, A. Pelissetto, and A. D. Sokal,J. Phys. A 23:L969 (1990).Google Scholar
  132. 132.
    A. J. Barrett, M. Mansfield, and B. C. Benesch,Macromolecules 24:1615 (1991).Google Scholar
  133. 133.
    J. L. Cardy and H. Saleur,J. Phys. A 22:L601 (1989).Google Scholar
  134. 134.
    A. J. Guttmann, S. Merrilees, and A. D. Sokal, Unpublished (1985).Google Scholar
  135. 135.
    D. C. Rapaport,J. Phys. A 18:113 (1985).Google Scholar
  136. 136.
    J. Dayantis and J.-F. Palierne,J. Chem. Phys. 95:6088 (1991).Google Scholar
  137. 137.
    L. A. Johnson, A. Monge, and R. A. Friesner,J. Chem. Phys. 97:9355 (1992).Google Scholar
  138. 138.
    F. Shanes and B. G. Nickel, Calculation of the radius of gyration for a linear flexible polymer chain with excluded volume interaction,J. Chem. Phys., to appear.Google Scholar
  139. 139.
    J. Dayantis and J.-F. Palierne,Phys. Rev. B 49:3217 (1994).Google Scholar
  140. 140.
    A. J. Guttmann,J. Phys. A 22:2807 (1989).Google Scholar
  141. 141.
    B. G. Nickel,Physica A 177:189 (1991).Google Scholar
  142. 142.
    K. E. Newman and E. K. Riedel,Phys. Rev. B 30:6615 (1984).Google Scholar
  143. 143.
    A. D. Sokal, Fundamental problems in the static scaling behavior of high-molecularweight polymers in dilute solution II. Critical review of the experimental literature, In preparation.Google Scholar
  144. 144.
    A. Yamamoto, M. Fujii, G. Tanaka, and H. Yamakawa,Polymer J. 2:799 (1971).Google Scholar
  145. 145.
    M. Fukuda, M. Fukutomi, Y. Kato, and T. Hashimoto,J. Polymer Sci.: Polymer Phys. Ed. 12:871 (1974).Google Scholar
  146. 146.
    Y. Miyaki, Y. Einaga, and H. Fujita,Macromolecules 11:1180 (1978).Google Scholar
  147. 147.
    J.-C. Leguillou and J. Zinn-Justin,Phys. Rev. Lett. 39:95 (1977).Google Scholar
  148. 148.
    J. P. Cotton,J. Phys. Lett. (Paris)41:L-231 (1980).Google Scholar
  149. 149.
    H. Utiyama, S. Utsumi, Y. Tsunashima, and M. Kurata,Macromolecules 11:506 (1978).Google Scholar
  150. 150.
    B. Appelt and C. Meyerhoff,Macromolecules 13:657 (1980).Google Scholar
  151. 151.
    H. R. Haller, C. Destor, and D. S. Cannell,Rev. Sci. Instrum. 54:973 (1983).Google Scholar
  152. 152.
    B. Chu, R. Xu, T. Maeda, and H. S. Dhadwal,Rev. Sci. Instrum. 59:716 (1988).Google Scholar
  153. 153.
    K. B. Strawbridge, F. R. Hallett, and J. Watton,Can. J. Appl. Spectrosc. 36:53 (1991).Google Scholar
  154. 154.
    A. D. Sokal, Optimal statistical analysis of static light-scattering data from dilute polymer solutions, In preparation.Google Scholar
  155. 155.
    M. Benhamou and G. Mahoux,J. Phys. Lett. (Paris)46:L-689 (1985).Google Scholar
  156. 156.
    C. Domb and F. T. Hioe,J. Chem. Phys. 51:1915 (1969).Google Scholar
  157. 157.
    M. van Prooyen and B. G. Nickel, The second virial coefficient for self-avoiding walks on a lattice, In preparation.Google Scholar
  158. 158.
    P. J. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953).Google Scholar
  159. 159.
    H. Yamakawa,Modern Theory of Polymer Solutions (Harper and Row, New York, 1971).Google Scholar
  160. 160.
    P. G. DeGennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).Google Scholar
  161. 161.
    C. Domb and A. J. Barrett,Polymer 17:179 (1976).Google Scholar
  162. 162.
    J. F. Douglas and K. F. Freed,Macromolecules 18:201 (1985).Google Scholar
  163. 163.
    J. F. Douglas and K. F. Freed,J. Phys. Chem. 88:6613 (1984).Google Scholar
  164. 164.
    Z. Y. Chen and J. Noolandi,J. Chem. Phys. 96:1540 (1992).Google Scholar
  165. 165.
    Z. Y. Chen and J. Noolandi,Macromolecules 25:4978 (1992).Google Scholar
  166. 166.
    B. Krüger and L. Schäfer,J. Phys. I (Paris)4:757 (1994).Google Scholar
  167. 167.
    L. Schäfer,Phys. Rev. E 50:3517 (1994).Google Scholar
  168. 168.
    C. Bagnuls and C. Bervillier,Phys. Rev. B 41:402 (1990).Google Scholar
  169. 169.
    K. G. Wilson and J. Kogut,Phys. Rev. 12C:75 (1974).Google Scholar
  170. 170.
    K. Gawędzki and A. Kupiainen, inCritical Phenomena, Random Systems, Gauge Theories [Les Houches 1984], Part I, K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986), pp. 185–293.Google Scholar
  171. 171.
    J. Polchinski,Nucl. Phys. B 231:269 (1984).Google Scholar
  172. 172.
    J. Hughes and J. Liu,Nucl. Phys. B 307:183 (1988).Google Scholar
  173. 173.
    S. Weinberg,Phys. Rev. D 8:3497 (1973).Google Scholar
  174. 174.
    J. C. Collins and A. J. Macfarlane,Phys. Rev. D 10:1201 (1974).Google Scholar
  175. 175.
    S. W. MacDowell,Phys. Rev. D 12:1089 (1975).Google Scholar
  176. 176.
    B. Duplantier,J. Phys. (Paris)43:991 (1982).Google Scholar
  177. 177.
    B. Duplantier,J. Chem. Phys. 86:4233 (1987).Google Scholar
  178. 178.
    B. Duplantier,Phys. Rev. A 38:3647 (1988).Google Scholar
  179. 179.
    C. Domb and G. S. Joyce,J. Phys. C 5:956 (1972).Google Scholar
  180. 180.
    B. Duplantier and H. Saleur,Phys. Rev. Lett. 59:539 (1987).Google Scholar
  181. 181.
    S. Caracciolo, G. Ferraro, A. Pelissetto, and A. D. Sokal, Work in progress.Google Scholar
  182. 182.
    E. Orlandini, M. C. Tesi, and S. G. Whittington, Private communication.Google Scholar
  183. 183.
    G. Tanaka and K. Šolc,Macromolecules 15:791 (1982).Google Scholar
  184. 184.
    J. des Cloizeaux,J. Phys. (Paris)42:635 (1981).Google Scholar
  185. 185.
    J. F. Douglas and K. F. Freed,Macromolecules 17:1854 (1984).Google Scholar
  186. 186.
    S. Sternberg,Am. J. Math. 79:809 (1957);80:623 (1958);81:578 (1959).Google Scholar
  187. 187.
    V. I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed. (Springer-Verlag, Berlin, 1988), Chapter 5.Google Scholar
  188. 188.
    R. de la Llave, Invariant manifolds associated to non-resonant spectral subspaces, University of Texas preprint (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Bin Li
    • 1
    • 2
  • Neal Madras
    • 3
  • Alan D. Sokal
    • 1
  1. 1.Debt and Equity Markets Group, Merrill LynchWorld Financial CenterNew York
  2. 2.Department of PhysicsNew York UniversityNew York
  3. 3.Department of Mathematics and StatisticsYork UniversityNorth YorkCanada

Personalised recommendations