Advertisement

Journal of Statistical Physics

, Volume 80, Issue 1–2, pp 69–102 | Cite as

Asymmetric exclusion model with two species: Spontaneous symmetry breaking

  • M. R. Evans
  • D. P. Foster
  • C. Godrèche
  • D. Mukamel
Articles

Abstract

A simple two-species asymmetric exclusion model is introduced. It consists of two types of oppositely charged particles driven by an electric field and hopping on an open chain. The phase diagram of the model is calculated in the meanfield approximation and by Monte Carlo simulations. Exact solutions are given for special values of the parameters defining its dynamics. The model is found to exhibit two phases in which spontaneous symmetry breaking takes place, where the two currents of the two species are not equal.

Key Words

Stochastic lattice gas excluded volume steady states phase transitions spontaneous symmetry breaking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Katz, J. L. Lebowitz, and H. Spohn, Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors,J. Stat. Phys. 34:497 (1984).Google Scholar
  2. 2.
    H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, New York, 1991).Google Scholar
  3. 3.
    B. Schmittmann and R. K. P. Zia, Statistical mechanics of driven diffusive systems, inPhase Transitions and Critical Phenomena, C. Domb and J. Lebowitz, eds. (Academic, London, 1994).Google Scholar
  4. 4.
    P. Meakin, P. Ramanlal, L. M. Sander and R. C. Ball, Ballistic deposition on surfaces,Phys. Rev. A34:5091–5103 (1986).Google Scholar
  5. 5.
    J. Kertész and D. E. SpohnPhys. Rev. Lett. 62:2571 (1989).Google Scholar
  6. 6.
    J. Krug and H. Spohn, Anomalous fluctuations in the driven and damped sine-Gordon chain,Europhys. Lett. 8:219–224 (1989).Google Scholar
  7. 7.
    J. Krug and H. Spohn, inSolids far from Equilibrium, C. Godrèche ed. (Cambridge University Press, Cambridge, 1991).Google Scholar
  8. 8.
    D. Kandel and D. Mukamel, Defects, interface profile and phase transitions in growth models,Europhys. Lett. 20:325–329 (1992).Google Scholar
  9. 9.
    T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).Google Scholar
  10. 10.
    B. Schmittmann, K. Hwang, and R. K. P. Zia, Onset of spatial structures in biased diffusion of two species,Europhys. Lett. 19:19 (1992).Google Scholar
  11. 11.
    D. P. Foster and C. Godrèche, Finite-size effects for phase segregation in a two-dimensional asymmetric exclusion model with two species,J. Stat. Phys. 76:1169 (1994).Google Scholar
  12. 12.
    J. Krug, Boundary-induced phase transitions in driven diffusive systems,Phys. Rev. Lett. 67:1882–1885 (1991).Google Scholar
  13. 13.
    D. Kandel, G. Gershinsky, D. Mukamel, and B. Derrida, Phase transitions induced by a defect in a growing interface model,Physica Scripta T49:622 (1993).Google Scholar
  14. 14.
    E. D. Andjel, M. Bramson, and T. M. Liggett, Shocks in the asymmetric simple exclusion process,Prob. Theory Rel. Fields 78:231–247 (1988).Google Scholar
  15. 15.
    A. DeMasi, C. Kipnis, E. Presutti, and E. Saada, Microscopic structure at the shock in the simple asymmetric exclusion process,Stochastics Stochastics Rep. 27:151–165 (1988).Google Scholar
  16. 16.
    P. A. Ferrari, C. Kipnis, and E. Saada, Microscopic structure traveling waves for asymmetric simple exclusion process,Ann. Prob. 19:226–244 (1991).Google Scholar
  17. 17.
    C. Boldrighini, G. Cosimi, S. Frigio, and M. G. Nuñes, Computer simulation of shock waves in the completely asymmetric simple exclusion process,J. Stat. Phys. 55:611–623 (1989).Google Scholar
  18. 18.
    S. A. Janowsky and J. L. Lebowitz, Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process,Phys. Rev. A45:618–625 (1992).Google Scholar
  19. 19.
    B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one dimensional asymmetric exclusion model with open boundaries,J. Stat. Phys. 69:667–687 (1992).Google Scholar
  20. 20.
    B. Derrida, M. R. Hakim, V. Evans, and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation,J. Phys. A: Math. Gen. 26:1493–1517 (1993).Google Scholar
  21. 21.
    G. Schütz, and E. Domany, Phase transitions in a exactly soluble one-dimensional exclusion process,J. Stat. Phys. 72:277–296 (1993).Google Scholar
  22. 22.
    B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, Microscopic-shock profiles: Exact solution of a non-equilibrium system,Europhys. Lett. 22:651–656 (1993); Exact solution of the totally asymmetric simple exclusion process: Shock profiles,J. Stat. Phys. 73:813 (1993).Google Scholar
  23. 23.
    M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel, Spontaneous symmetry breaking in a one-dimensional driven diffusive system,Phys. Rev. Lett. 74:208–211 (1995).Google Scholar
  24. 24.
    M. Rubinstein, Discretized model of entangled-polymer dynamics,Phys. Rev. Lett. 59:1496–1949 (1987).Google Scholar
  25. 25.
    T. A. J. Duke, Tube model of field-inversion electrophoresis,Phys. Rev. Lett. 62:2877–2880 (1989).Google Scholar
  26. 26.
    B. Widom, J. L. Viovy, and A. D. Defontaines, Repton model of gel electrophoresis and diffusion,J. Phys. I. (France) 1:1759–1784 (1991).Google Scholar
  27. 27.
    J. M. J. van Leeuwen, and A. Kooiman, The drift velocity in the Rubinstein-Duke model for electrophoresis,Physica A 184:79–97 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • M. R. Evans
    • 1
  • D. P. Foster
    • 2
  • C. Godrèche
    • 2
    • 3
  • D. Mukamel
    • 3
    • 4
  1. 1.Laboratoire de Physique Statistique (Laboratoire associé au Centre National de la Recherche Scientifique et aux Universités Paris VI et Paris VII)École Normale SupérieureParis Cedex 05France
  2. 2.Service de Physique de l'État CondenséCentre d'Études de SaclayGif-sur-Yvette CedexFrance
  3. 3.Newton Institute for Mathematical SciencesCambridgeUK
  4. 4.Department of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations