Journal of Autism and Developmental Disorders

, Volume 25, Issue 1, pp 1–18 | Cite as

Development of the brainstem and cerebellum in autistic patients

  • Toshiaki Hashimoto
  • Masanobu Tayama
  • Kazuyosi Murakawa
  • Tsutomu Yoshimoto
  • Masahito Miyazaki
  • Midori Harada
  • Yasuhiro Kuroda
Article

Abstract

Studies of magnetic resonance images have revealed morphological disorders of the brainstem and cerebellum in autistic children and adults. When we studied development of the brainstem and cerebellum in autistic patients, we found that although the brainstem and cerebellum significantly increased in size with age in both autistic patients and controls, these structures were significantly smaller in autistic patients than in controls. The speed of development of the pons, the cerebellar vermis I–V and the cerebellar vermis VI–VII was significantly more rapid in autistic patients than in the controls. However, the speed of development of the other brain structures in the posterior fossa did not differ between autistic patients and controls. The regression intercepts of the brainstem and cerebellum as well as those of their components were significantly smaller in autistic patients than in controls. Results suggest that brainstem and vermian abnormalities in autism were due to an early insult and hypoplasia rather than to a progressive degenerative process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arin, D. M., Bauman, M. L., & Kemper, T. L. (1991). The distribution of Purkinje cell loss in the cerebellum in autism.Neurology, 41 (Suppl. 1), 307.Google Scholar
  2. Bauman, M. L. (1991). Microscope neuroanatomic abnormalities in autism.Pediatrics, 87 (Suppl.), 791–796.Google Scholar
  3. Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism.Neurology, 35, 866–874.Google Scholar
  4. Brenner, E., Mirmiran, M., Uylings, H. B. M., & Van der Gugten, J. (1983). Impaired growth of the central cortex of rats treated neonatally with 6-OH-DA under different environmental conditions.Neuroscience Letter, 42, 13–17.Google Scholar
  5. Brodal, A. (1981).Neurological anatomy. New York: Oxford University Press.Google Scholar
  6. Ciesielski, K. T., Allen, P. S., Sinclair, B. D., Pabst, H. F., Yanofsky, R., & Ludwig, R. (1990, November). Hypoplasia of cerebellar vermis in autism and childhood leukemia. InProceeding of the Joint Convention of the Fifth International Child Congress and the Third Asian and Oceanian Congress of Child Neurology (p. 650), Tokyo, Japan.Google Scholar
  7. Cooper, J. R., Bloom, F. E., & Roth, R. H. (1978).The biochemical basis of neuropharmacology (3rd ed.). New York: Oxford University Press.Google Scholar
  8. Courchesne, E., Press, G. A., & Yeung-Courchesne, R. (1993). Parietal lobe abnormalities detected with MR in patients with infantile autism.American Journal of Roentgenology, 160, 387–393.Google Scholar
  9. Courchesne, E., Saitoh, O., Yeung-Courchesne, R., Press, G. A., Lincoln, A. J., Has, R. H., & Schreibman, L. (1994a). Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic subgroups by MR imaging.American Journal of Roentgenology, 162, 123–130.Google Scholar
  10. Courchesne, E., Townsend, J. P., & Saitoh, O. (1994b). The brain in infantile autism: posterior fossa structures are abnormal.Neurology, 44, 214–223.Google Scholar
  11. Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar lobules VI and VII in infantile autism.New England Journal of Medicine, 318, 1349–1354.Google Scholar
  12. Gaffney, G. R., Kuperman, S., Tsai, L. Y., & Minchin, S. (1988). Morphological evidence of brainstem involvement in infantile autism.Biological Psychiatry, 24, 578–586.Google Scholar
  13. Gaffney, G. R., Kuperman, S., Tsai, L. Y., Minchin, S., & Hassanein, K. M. (1987b). Midsagittal magnetic resonance imaging of autism.British Journal of Psychiatry, 151, 831–833.Google Scholar
  14. Gaffney, G. R., Tsai, L. Y., Kuperman, S., & Minchin, S. (1987a). Cerebellar structure in autism.American Journal of Disease in Children, 141, 1330–1332.Google Scholar
  15. Garber, H. J., & Ritvo, E. R. (1992). Magnetic resonance imaging of the posterior fossa in autistic children.American Journal of Psychiatry, 149, 245–247.Google Scholar
  16. Geyer, M. A., Peurto, A., Menkes, D. B., Segal, D. S., & Mandel, A. J. (1976). Behavioral studies following lesions of the mesolimbic and mesostriatal serotonergic pathways.Brain Research, 106, 257–270.Google Scholar
  17. Ghez, C. (1991). The cerebellum. In E. R. Kandel, J. H. Schwartz, & T. Jessell (Eds.),Principles of neural science (3rd ed., pp. 626–646). New York: Elsevier.Google Scholar
  18. Gillberg, C., & Colman, M. (1992).The biology of the autistic syndromes (2nd ed.). New York: Cambridge University Press.Google Scholar
  19. Hashimoto, T., Murakawa, K., Miyazaki, M., Tayama, M., & Kuroda, Y. (1992a). Magnetic resonance imaging of the brain structures in the posterior fossa in retarded autistic children.Acta Paediatrica Scandinavica, 81, 1030–1034.Google Scholar
  20. Hashimoto, T., Tayama, M., & Miyao, M. (1986). Short latency somatosensory evoked potentials in children with autism.Brain and Development, 8, 428–432.Google Scholar
  21. Hashimoto, T., Tayama, M., Miyazaki, M., & Kuroda, Y. (1991). Development of the brainstem: assessment by MR imaging.Neuropediatrics, 22, 139–146.Google Scholar
  22. Hashimoto, T., Tayama, M., Miyazaki, M., Murakawa, K., & Kuroda, Y. (1993a). Brainstem and cerebellar vermis involvement in autistic children.Journal of Child Neurology, 8, 149–153.Google Scholar
  23. Hashimoto, T., Tayama, M., Miyazaki, M., Murakawa, K., Shimakawa, S., Yoneda, Y., & Kuroda, Y. (1993b). Brainstem involvement in high functioning autistic children.Acta Neurologica Scandinavica, 88, 123–128.Google Scholar
  24. Hashimoto, T., Tayama, M., Miyazaki, M., Sakurama, M., Yoshimoto, T., Murakawa, K., & Kuroda, Y. (1992b). Reduced brainstem size in children with autism.Brain and Development, 14, 94–97.Google Scholar
  25. Hayakawa, K., Konishi, Y., Matsuda, T., Kuriyama, M., Konishi, K., Yamashita, K., Okumura, R., & Hamanaka, D. (1989). Development and aging of brain midline structures: assessment with MR imaging.Neuroradiology, 172, 171–177.Google Scholar
  26. Hsu, M., Yeung-Courchesne, R., Courchesne, E., & Press, G. A. (1991). Absence of magnetic resonance imaging evidence of pontine abnormality in infantile autism.Archives of Neurology, 48, 1160–1163.Google Scholar
  27. Ieshima, A., Kisa, T., Yoshino, K., Takashima, S., & Takeshita, K. (1984). A morphometric CT study of Down's syndrome showing small posterior fossa and calcification of basal ganglia.Neuroradiology, 26, 493–498.Google Scholar
  28. Kleiman, M. D., Neff, S., & Rosman, N. P. (1992). The brain in infantile autism: Are posterior fossa structures abnormal?Neurology, 42, 753–760.Google Scholar
  29. Klin, A. (1993). Auditory brainstem responses in autism: brainstem dysfunction or peripheral hearing loss?Journal of Autism and Developmental Disorders, 23, 15–35.Google Scholar
  30. Kohen-Raz, R., Volkmer, F. R., & Cohen, D. J. (1992). Postural control in children with autism.Journal of Autism and Developmental Disorders, 22, 419–432.Google Scholar
  31. Makita, K., & Umezu, K. (1972). An objective evaluation technique for autistic children. An introduction of CLAC scheme.Acta Paedopsychiatrica, 39, 237–253.Google Scholar
  32. Murakami, J. W., Courchesne, E., Press, G. A., Yeung-Courchesne, R., & Hesselink, J. R. (1989). Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism.Archives of Neurology, 46, 689–694.Google Scholar
  33. Murakawa, K., Hashimoto, T., Miyazaki, M., & Kuroda, Y. (1991). MRI measurements of the brainstem on children with mental retardation.No To Hattatsu, 23 (Suppl.), S218.Google Scholar
  34. Ornitz, E. M. (1985). Neurophysiology of infantile autism.Journal of the American Academy of Child Psychiatry, 24, 251–262.Google Scholar
  35. Ornitz, E. M. (1987). Neurophysiologic studies of infantile autism. In D. J. Cohen, A. M. Donnellan, & R. Paul (Eds.),Handbook of autism and pervasive developmental disorders (pp. 148–165). New York: Wiley.Google Scholar
  36. Ornitz, E. M. (1988). Autism: a disorder of directed attention.Brain Dysfunction, 1, 309–322.Google Scholar
  37. Piven, J., Berthier, M. L., Starkstein, S., Nehme, E., Pearlson, G., & Folstein, S. (1990). Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism.American Journal of Psychiatry, 147, 734–739.Google Scholar
  38. Piven, J., Nehme, E., Simon, J., Barta, P., Pearlson, G., & Folstein, E. (1992). Magnetic resonance imaging in autism: measurement of the cerebellum, pons, and fourth ventricle.Biological Psychiatry, 31, 491–504.Google Scholar
  39. Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., Guthrie, D., & Ritvo, A. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research report.American Journal of Psychiatry, 143, 862–866.Google Scholar
  40. Thivierge, J., Bedard, C., Cote, R., & Maziade, M. (1990). Brainstem auditory evoked response and subcortical abnormalities in autism.American Journal of Psychiatry, 147, 1609–1613.Google Scholar
  41. Tsai, L. Y. (1987). Pre-, peri-, and neonatal factors in autism. In E. Schopler & G. B. Mesibov (Eds.),Neurobiological issues in autism (pp. 179–189). New York: Plenum Press.Google Scholar
  42. Williams, R. S., Hauser, S. L., Purpura, D. P., DeLong, R., & Swisher, C. N. (1980). Autism and mental retardation: Neuropathological studies performed in four retarded persons with autistic behavior.Archives of Neurology, 37, 749–753.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Toshiaki Hashimoto
    • 1
  • Masanobu Tayama
    • 1
  • Kazuyosi Murakawa
    • 1
  • Tsutomu Yoshimoto
    • 1
  • Masahito Miyazaki
    • 1
  • Midori Harada
    • 1
  • Yasuhiro Kuroda
    • 1
  1. 1.University of Tokushima School of MedicineJapan

Personalised recommendations