Journal of Statistical Physics

, Volume 85, Issue 1–2, pp 261–276 | Cite as

Fractal properties of critical invariant curves

  • Brian R. Hunt
  • Konstantin M. Khanin
  • Yakov G. Sinai
  • James A. Yorke
Short Communications


We examine the dimension of the invariant measure for some singular circle homeomorphisms for a variety of rotation numbers, through both the thermodynamic formalism and numerical computation. The maps we consider include those induced by the action of the standard map on an invariant curve at the critical parameter value beyond which the curve is destroyed. Our results indicate that the dimension is universal for a given type of singularity and rotation number, and that among all rotation numbers, the golden mean produces the largest dimension.

Key Words

Thermodynamic formalism fractal dimension invariant measure circle homeomorphism rotation number twist map critical curve renormalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Artuso, E. Aurell and P. Cvitanovic, Recycling of strange sets: I. Circle expansion, II. Applications,Nonlinearity 3:325–386 (1990).Google Scholar
  2. 2.
    E. Aurell, On the metric properties of the Feigenbaum attractor,J. Stat. Phys. 47:439–458 (1987).Google Scholar
  3. 3.
    J. Balatoni and A. Rényi, Remarks on entropy,Publ. Math. Inst. Hung. Acad. Sci. 1:9–40 (1956) [in Hungarian with English summary]; English translation inSelected Papers of Alfréd Rényi, Vol. 1 (Akadémiai Kiadó, Budapest, 1976), pp. 558–586.Google Scholar
  4. 4.
    G. D. Birkhoff, Sur quelques courbes fermees remarquable,Bull. Soc. Math. France 60 (1932); also inCollected Papers, Vol. II (American Mathematical Society, Providence, Rhode Island, 1950), pp. 444–461.Google Scholar
  5. 5.
    P. Collet, J. L. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical systems,J. Stat. Phys. 47:609–644 (1987).Google Scholar
  6. 6.
    J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors,Physica 7D:153–180 (1983).Google Scholar
  7. 7.
    M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations,J. Stat. Phys. 19:25–52 (1978).Google Scholar
  8. 8.
    M. J. Feigenbaum, The universal metric properties of nonlinear transformations,J. Stat. Phys. 21:669–706 (1979).Google Scholar
  9. 9.
    M. J. Feigenbaum, L. P. Kadanoff, and S. J Shenker, Quasiperiodicity in dissipative systems: A renormalization group analysis,Physica 5D:370–386 (1982).Google Scholar
  10. 10.
    J. M. Greene A method for determining a stochastic transition,J. Math. Phys. 20:1183–1201 (1979).Google Scholar
  11. 11.
    J. Graczyk and G. Świątek, Critical circle maps near bifurcation, SUNY Stony Brook IMS preprint #1991/8.Google Scholar
  12. 12.
    J. Graczyk and G. Świątek, Singular measures in circle dynamics,Commun. Math. Phys. 157:213–230 (1993).Google Scholar
  13. 13.
    T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets,Phys. Rev. A 33:1141–1151 (1986).Google Scholar
  14. 14.
    M. Herman, Sur la conjugasion différentiable des difféomorphismes du cercle à des rotations,Pub. Math. IHES 49:5–233 (1979).Google Scholar
  15. 15.
    M. Herman, Sur les Courbes Invariantes par les Difféomorphismes de l'Anneau, Vol. 1,Astérisque 103–104 (1983).Google Scholar
  16. 16.
    Y. Katznelson and D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle,Ergodic Theory Dynam. Syst. 9:643–680 (1989).Google Scholar
  17. 17.
    Y. Katznelson and D. Ornstein, A new method for twist theorems,J. Analyse 60:157–208 (1993).Google Scholar
  18. 18.
    K. M. Khanin, Universal estimates for critical circle mappings,Chaos 1:181–186 (1991).Google Scholar
  19. 19.
    K. M. Khanin, Rigidity for circle homeomorphisms with the break singularity,Russ. Acad. Sci. Dokl. Math., to appear.Google Scholar
  20. 20.
    K. M. Khanin and E. B. Vul, Circle homeomorphisms with weak discontinuities,Adv. Sov. Math. 3:57–98 (1991).Google Scholar
  21. 21.
    R. S. Mackay,Renormalization in Area-Preserving Maps (World Scientific, Singapore, 1993).Google Scholar
  22. 22.
    A. Osbaldestin and M. Sarkis, Singularity spectrum of a critical KAM torus,J. Phys. A: Math. Gen. 20:L953–958 (1987).Google Scholar
  23. 23.
    S. Ostlund, D. Rand, J. Sethna, and E. Siggia, Universal properties of the transition from quasi-periodicity to chaos in dissipative systems,Physica 8D:303–342 (1983).Google Scholar
  24. 24.
    Ya. G. Sinai,Topics in Ergodic Theory (Princeton University Press, Princeton, New Jersey, 1994).Google Scholar
  25. 25.
    A. Stirnemann, Renormalization for golden circles,Commun. Math. Phys. 152:369–431 (1993).Google Scholar
  26. 26.
    D. Sullivan, Private communication.Google Scholar
  27. 27.
    G. Świątek, Rational rotation numbers for maps of the circle,Commun. Math. Phys. 119:109–128 (1988).Google Scholar
  28. 28.
    E. B. Vul, Ya. G. Sinai, and K. M. Khanin, Feigenbaum universality and the thermodynamic formalism,Russ. Math. Surv. 39:3 (1984).Google Scholar
  29. 29.
    L.-S. Young, Dimension, entropy and Lyapunov exponents,Ergodic Theory Dynam. Syst. 2:109–124 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Brian R. Hunt
    • 1
  • Konstantin M. Khanin
    • 2
    • 3
  • Yakov G. Sinai
    • 2
    • 3
  • James A. Yorke
    • 1
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege Park
  2. 2.Department of MathematicsPrinceton UniversityPrinceton
  3. 3.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations