Journal of Statistical Physics

, Volume 85, Issue 1–2, pp 151–164 | Cite as

On damage-spreading transitions

  • Franco Bagnoli
Articles

Abstract

We study the damage-spreading transition in a generic one-dimensional stochastic cellular automaton with two inputs (Domany-Kinzel model). Using an original formalism for the description of the microscopic dynamics of the model, we are able to show analytically that the evolution of the damage between two systems driven by the same noise has the same structure as a directed percolation problem. By means of a mean-field approximation, we map the density phase transition into the damage phase transition, obtaining a reliable phase diagram. We extend this analysis to all symmetric cellular automata with two inputs, including the Ising model with heat-bath dynamics.

Key Words

Damage spreading directed percolation stochastic cellular automata disordered systems symmetry breaking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Domany and W. Kinzel,Phys. Rev. Lett. 53:311 (1984).Google Scholar
  2. 2.
    W. Kinzel,Z. Phys. 58:229 (1985).Google Scholar
  3. 3.
    P. Grassberger,J. Stat. Phys. 79:13 (1995).Google Scholar
  4. 4.
    R. Dickman,Phys. Rev. E 50:4404 (1994).Google Scholar
  5. 5.
    F. Bagnoli, R. Bulajich, R. Livi, and A. Maritan,J. Phys. A: Math. Gen. 25: L1071 (1992).Google Scholar
  6. 6.
    M. L. Martins, H. F. Verona de Resende, C. Tsallis, and A. C. N. de Magalhães,Phys. Rev. Lett. 66:2045 (1991).Google Scholar
  7. 7.
    G. A. Kohring and M. Schreckenberg,J. Phys. I France 2:2033 (1992).Google Scholar
  8. 8.
    G. F. Zabende and T. J. P. Penna,J. Stat. Phys. 74:1273 (1994).Google Scholar
  9. 9.
    H. Rieger, A. Schadschneider, and M. Schreckenberg,J. Phys. A: Math. Gen. 27:L423 (1994).Google Scholar
  10. 10.
    T. Tomé,Physica A 212:99 (1994).Google Scholar
  11. 11.
    H. K. Jannsen,Z. Phys. B 42:151 (1992).Google Scholar
  12. 12.
    P. Grassberger,Z. Phys. B 47:365 (1982).Google Scholar
  13. 13.
    S. Wolfram, ed.,Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986).Google Scholar
  14. 14.
    S. Kauffman,J. Theor. Biol. 22:437 (1969).Google Scholar
  15. 15.
    F. Bagnoli,Int. J. Mod. Phys. C 3:307 (1992).Google Scholar
  16. 16.
    F. Bagnoli, R. Rechtman, and S. Ruffo,Phys. Lett. A 172:34 (1992).Google Scholar
  17. 17.
    E. Domany, Private communication (1994).Google Scholar
  18. 18.
    H. A. Gutowitz, D. Victor, and B. W. Knight,Physica 28D:28 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Franco Bagnoli
    • 1
    • 2
  1. 1.Dipartimento di Matematica ApplicataUniversità di FirenzeFirenzeItaly
  2. 2.INFN and INFM sezione di FirenzeFirenzeItaly

Personalised recommendations