Molecular and General Genetics MGG

, Volume 251, Issue 1, pp 31–37 | Cite as

Identification of the pheromone response element inUstilago maydis

  • M. Urban
  • R. Kahmann
  • M. Bölker
Original Paper

Abstract

Thea mating type locus ofUstilago maydis contains the structural genes for a pheromone-based cell recognition system that governs fusion of haploid cells. Binding of pheromone to its cognate receptor induces mating competence in haploid cells and stimulates filamentous growth of the dikaryon. We have analyzed transcription of genes located at thea locus and demonstrate that all genes are induced by pheromone. Transcriptional stimulation is mediated by a 9 bp DNA element (ACAAAGGGA) that occurs in multiple copies in both alleles of thea locus. By fusing multimers containing this 9 bp sequence to the pheromone gene promoter and to a heterologous promoter we demonstrate that this sequence acts as a pheromone response element. In addition, we show that expression of theb genes, which regulate pathogenic development of the dikaryon, is also stimulated by pheromone. Pheromone-inducible genes can be divided into three classes depending on whether their expression is reduced, maintained, or increased after cell fusion. These differences may suggest some regulatory cross-talk between thea andb loci.

Key words

Mating type Pheromone response element Signal transduction Gene regulation Ustilago maydis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aono T, Yanai H, Miki F, Davey J, Shimoda C (1994) Mating pheromone-induced expression of themat1-Pm gene ofSchizosaccharomyces pombe: identification of signalling components and characterization of upstream controlling elements. Yeast 10:757–770PubMedGoogle Scholar
  2. Banuett F, Herskowitz I (1989) Differenta alleles ofUstilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci USA 86:5878–5882Google Scholar
  3. Banuett F, Herskowitz I (1994) Identification of Fuz7, aUstilago maydis MEK/MAPKK homolog required fora-locus-dependent and -independent steps in the fungal life cycle. Genes Dev 8:1367–1378PubMedGoogle Scholar
  4. Bergemann J (1993) Molekularbiologische Untersuchungen der Transkripte und Produkte desb-Locus vonUstilago maydis. PhD thesis, Freie Universität BerlinGoogle Scholar
  5. Bölker M, Urban M, Kahmann R (1992a) Thea mating-type locus ofU. maydis specifies cell signalling components. Cell 68:441–450PubMedGoogle Scholar
  6. Bölker M, Urban M, Lauenstein S, Lurz R, Kahmann R (1992b) Genetical and functional organisation of thea mating type locus ofUstilago maydis. In: Nester EW, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol 2. Kluwer Academic Publishers, Dordrecht, pp 264–271Google Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:245–248Google Scholar
  8. Dolan JW, Kirkman C, Fields S (1989) The yeast STE12 protein binds to the DNA sequence mediating pheromone induction. Proc Natl Acad Sci USA 86:5703–5707PubMedGoogle Scholar
  9. Froeliger H, Leong SA (1991) Thea mating-type alleles ofUstilago maydis are idiomorphs. Gene 100:113–122PubMedGoogle Scholar
  10. Gillissen B, Bergemann J, Sandmann C, Schroeer B, Bölker M, Kahmann R (1992) A two-component system for self/non-self recognition inUstilago maydis. Cell 68:647–657PubMedGoogle Scholar
  11. Grosschedl R, Giese K, Pagel J (1994) HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet 10:94–100PubMedGoogle Scholar
  12. Holden DW, Kronstad JW, Leong SA (1989) Mutation in a heat-regulatedhsp70 gene ofUstilago maydis. EMBO J 8:1927–1934PubMedGoogle Scholar
  13. Holliday R (1961) The genetics ofUstilago maydis. Genet Res Cambr 2:204–230Google Scholar
  14. Holliday R (1974)Ustilago maydis. In: King RC (ed) Handbook of genetics, vol. 1. Plenum Press, New York, pp 575–595.Google Scholar
  15. Jackson CL, Hartwell LH (1990) Courtship inSaccharomyces cerevisiae: both cell types choose mating partners by responding to the strongest pheromone signal. Cell 63:1039–1051PubMedGoogle Scholar
  16. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405Google Scholar
  17. Kämper J, Reichmann M, Romeis T, Bölker M, Kahmann R (1995) Multiallelic recognition: nonself-dependent dimerization of thebE andbW homeodomain proteins inUstilago maydis. Cell 81:73–83PubMedGoogle Scholar
  18. Keon JPR, White GA, Hargreaves JA (1991) Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen,Ustilago maydis. Curr Genet 19:475–481PubMedGoogle Scholar
  19. Kronstad JW, Holly JA, MacKay VL (1987) A yeast operator overlaps an upstream activation site. Cell 50:369–377PubMedGoogle Scholar
  20. Laudet V, Stehelin D, Clevers H (1993) Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res 21:2493–2501PubMedGoogle Scholar
  21. Laity C, Giasson L, Campbell R, Kronstad J (1995) Heterozygosity at theb mating-type locus attenuates fusion inUstilago maydis. Curr Genet 27:451–459PubMedGoogle Scholar
  22. Marsh L, Neiman AM, Herskowitz I (1991) Signal transduction during pheromone response in yeast. Annu Rev Cell Biol 7:699–728PubMedGoogle Scholar
  23. Mönke E, Schäfer W (1993) Transient and stable gene expression in the fungal maize pathogenCochliobolus heterostrophus after transformation with theβ-glucuronidase (GUS) gene. Mol Gen Genet 241:73–80PubMedGoogle Scholar
  24. Richard G, Bailey JA, Keon JPR, Hargreaves JA (1992) Development of a GUS reporter gene system for the maize pathogenUstilago maydis. Physiol Molec Plant Pathol 40:383–393Google Scholar
  25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  26. Schauwecker F, Wanner G, Kahmann R (1995) Filament-specific expression of a cellulase gene in the dimorphic fungusUstilago maydis. Biol Chem Hoppe-Seyler 376:617–625PubMedGoogle Scholar
  27. Schulz B, Banuett F, Dahl M, Schlesinger R, Schäfer W, Martin T, Herskowitz I, Kahmann R (1990) Theb alleles ofU. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60:295–306PubMedGoogle Scholar
  28. Snetselaar KM (1993) Microscopic observation ofUstilago maydis mating interactions. Exp Mycology 17:345–355Google Scholar
  29. Spellig T, Bölker M, Lottspeich F, Frank RW, Kahmann R (1994) Pheromones trigger filamentous growth inUstilago maydis. EMBO J 13:1620–1627PubMedGoogle Scholar
  30. Sugimoto A, Iino Y, Maeda T, Watanabe Y, Yamamoto M (1991)Schizosaccharomyces pombe stell + encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev 5:1990–1999PubMedGoogle Scholar
  31. Urban M, Kahmann R, Bölker M (1996) The biallelica mating type locus ofUstilago maydis: Remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor. Mol Gen Genet, in pressGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. Urban
    • 1
  • R. Kahmann
    • 1
  • M. Bölker
    • 1
  1. 1.Institut für Genetik und Mikrobiologie der Universität MünchenMünchenGermany

Personalised recommendations