Molecular and General Genetics MGG

, Volume 252, Issue 3, pp 320–331 | Cite as

CgT1: a non-LTR retrotransposon with restricted distribution in the fungal phytopathogenColletotrichum gleosporioides

  • C. He
  • J. P. Nourse
  • J. A. G. Irwin
  • J. M. Manners
  • S. Kelemu
Original Paper

Abstract

Two genetically distinct biotypes (A and B) ofColletotrichum gloeosporioides that cause different anthracnose diseases on the legumesStylosanthes spp. have been identified in Australia. A DNA sequence that was present in biotype B and absent in biotype A was isolated by differential hybridisation of a genomic library using total genomic DNA of each biotype as hybridisation probes. This sequence also failed to hybridise to DNA of three biotypes ofC. gloeosporioides from other host species and to DNA of three other species ofColletotrichum. This clone was used to isolate two cosmid clones of biotype B. Sequence analysis of these clones revealed a repetitive element of approximately 5.7 kb in length. This element, termedCgT1, was dispersed in the genome and present in about 30 copies. The element contained open reading frames encoding deduced sequence motifs homologous togag-like proteins, reverse transcriptase and RNase H domains of non-LTR retrotransposons. The termini ofCgT1 lacked long terminal repeats (LTRs) but contained a 3′ A-rich domain. The insertion site of one copy of the element was flanked by short 13-bp direct repeats. These characteristics of the termini, taken together with the overall structure and sequence homologies, indicate thatCgT1 belongs to the non-LTR, LINE-like retrotransposon class of elements that are present in many eukaryotes. PCR primers designed to amplify regions ofCgT1 can be used to distinguish biotypes A and B in Australia. DNA fingerprinting analysis of genomic DNA using hybridisation probes derived from the terminal regions ofCgT1 revealed that Australian isolates of biotype B are monomorphic.CgT1 was not detected in some isolates causing Type B disease from other countries and whenCgT1 was present there was considerable polymorphism inCgT1 organisation in the genome.CgT1 is the first transposon-like element to be identified in the genusColletotrichum and has considerable potential as a tool for the study of population structure, genome dynamics and evolution inC. gloeosporioides.

Key words

Retroposon Colletotrichum gloeosporioides Anthracnose DNA fingerprinting Horizontal transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson JB, Kohn LM (1995) Clonality in soilborne plant-pathogenic fungi. Annu Rev Phytopathol 33:369–391CrossRefGoogle Scholar
  2. Ballance DJ (1986) Sequences important for gene expression in filamentous fungi. Yeast 2:229–236CrossRefPubMedGoogle Scholar
  3. Braithwaite KS, Irwin JAG, Manners JM (1990) Restriction fragment length polymorphisms inColletotrichum gloeosporioides infectingStylosanthes spp. in Australia. Mycol Res 94:1129–1137Google Scholar
  4. Cambereri EB, Helber J, Kinsey JA (1994) Tad-1, an active LINE-like element ofNeurospora crassa. Mol Gen Genet 242:658–665PubMedGoogle Scholar
  5. Daboussi MJ, Langin T (1994) Transposable elements in the fungal plant pathogenFusarium oxysporum. Genetica 93:49–59CrossRefGoogle Scholar
  6. Dobinson KF, Harris RE, Hamer JE (1993)Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungusMagnaporthe grisea. Mol Plant-Microbe Interact 6:114–126PubMedGoogle Scholar
  7. Eickbush TH (1992) Transposing without ends: the non-LTR retrotransposable elements. New Biol 4:430–440PubMedGoogle Scholar
  8. Felger I, Hunt JA (1992) A non-LTR retrotransposon from the HawaiianDrosophila: the LOA element. Genetica 85:119–130CrossRefPubMedGoogle Scholar
  9. Goodwin SB, Cohen BA, Fry WE (1994) Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. Proc Natl Acad Sci USA 91:11591–11595.PubMedGoogle Scholar
  10. He C, Masel AM, Irwin JAG, Kelemu S, Manners JM (1995) Distribution and relationship of chromosome-specific dispensable DNA sequences in diverse isolates ofColletotrichum gloeosporioides. Mycol Res 99:1325–1333Google Scholar
  11. Hodson A, Mills PR, Brown AE (1993) Ribosomal and mitochondrial DNA polymorphisms inColletotrichum gloeosporioides isolated from tropical fruits. Mycol Res 97:329–335Google Scholar
  12. Hutchison CA, Hardies SC, Loeb DD, Shehee WR, Edgell MH (1989) LINEs and related retrotransposons: long interspersed repeated sequences in the eukaryotic genome. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 593–617Google Scholar
  13. Irwin JAG, Cameron DF (1978) Two diseases inStylosanthes spp. caused byColletotrichum gloeosporioides in Australia, and pathogenic specialisation within one of the causal organisms. Aust J Agric Res 29:305–317CrossRefGoogle Scholar
  14. Itaya M, McKelvin D, Chatterjeie SK, Crouch RJ (1991) Selective cloning of genes encoding RNase H fromSalmonella typhimurium, Saccharomyces cerevisiae andEscherichia coli rnh mutant. Mol Gen Genet 227:438–445CrossRefPubMedGoogle Scholar
  15. Kinsey JA (1989) Restricted distribution of the Tad transposon in strains ofNeurospora. Curr Genet 15:271–275PubMedGoogle Scholar
  16. Kinsey JA (1990)Tad, a LINE-like transposable element ofNeurospora, can transpose between nuclei in heterokaryons. Genetics 126:317–323PubMedGoogle Scholar
  17. Kinsey JA, Helber J (1989) Isolation of a transposable element fromNeurospora crassa. Proc Natl Acad Sci USA 86:1929–1933PubMedGoogle Scholar
  18. Kistler HC, Miao VPW (1992) New modes of genetic change in filamentous fungi. Annu Rev Phytopathol 30:131–152CrossRefGoogle Scholar
  19. Levin, HL, Weaver DC, Boeke JD (1990) Two related families of retrotransposons fromSchizosaccharomyces pombe. Mol Cell Biol 10:6791–6798PubMedGoogle Scholar
  20. Levy M, Romao J, Marchetti MA, Hamer JE (1991) DNA finger-printing with a dispersed repeat sequence resolves pathogenic diversity in the rice blast fungus. Plant Cell 3:95–102CrossRefPubMedGoogle Scholar
  21. Levy M, Correa-Victoria FJ, Zeigler RS, Xu S, Hamer JE (1993) Genetic diversity of the rice blast fungus in a disease nursery in Colombia. Phytopathol 83:1427–1433Google Scholar
  22. Liyanage HD, McMillan RT, Kistler HC (1992) Two genetically distinct populations ofColletotrichum gloeosporioides from citrus. Phytopathol 82:1371–1376Google Scholar
  23. Lockington RA, Taylor GG, Winther M, Scazzocchio C, Davis RW (1982) A physical map of the ribosomal DNA repeat unit ofAspergillus nidulans. Gene 20:135–137CrossRefPubMedGoogle Scholar
  24. Maclean DJ, Braithwaite KS, Manners JM, Irwin JAG (1993) How do we identify and classify fungal plant pathogens in the era of DNA analysis?. In: Andrews JH, Tommerup IC (eds) Advances in plant pathology, vol. 10. Academic Press, London, pp 207–244Google Scholar
  25. Manners JM, Masel AM, Braithwaite KS, Irwin JAG (1992) Molecular analysis ofColletotrichum gloeosporioides pathogenic on the tropical pasture legumeStylosanthes spp. In: Bailey JA, Jeger M (eds)Colletotrichum: biology, pathology and control. CAB International, Oxford, pp 250–268Google Scholar
  26. Manners JM, Masel AM, Irwin JAG (1993) Molecular genetics ofColletotrichum gloeosporioides infectingStylosanthes. In: Isaac S, Frankland JC, Watling R, Whalley AJS (eds) Aspects of tropical mycology. Cambridge University Press, pp 233–251Google Scholar
  27. Masel AM, Braithwaite KS, Irwin JAG, Manners JM (1990) Highly variable molecular karyotypes in the plant pathogenColletotrichum gloeosporioides. Curr Genet 18:81–86CrossRefGoogle Scholar
  28. Masel AM, Irwin JAG, Manners JM (1993a) DNA addition or deletion is associated with a major karyotype polymorphism in the fungal phytopathogenColletotrichum gloeosporioides. Mol Gen Genet 237:73–80CrossRefPubMedGoogle Scholar
  29. Masel AM, Irwin JAG, Manners JM (1993b) Mini-chromosomes ofColletotrichum spp. infecting several host species in various countries. Mycol Res 26:852–856Google Scholar
  30. Masel AM, Struijk N, McIntyre CL, Irwin JAG, Manners JM (1993c) A strain-specific cyclin homolog in the fungal phytopathogenColletotrichum gloeosporioides. Gene 133:141–145CrossRefPubMedGoogle Scholar
  31. Masel AM, He C, Poplawski AM, Irwin JAG, Manners JM (1996) Molecular evidence for chromosome transfer between biotypes ofColletotrichum gloeosporioides. Mol Plant-Microbe Interact. 9:339–348Google Scholar
  32. Matthew J, Herdina, Whisson D (1995) DNA probe specific toRhizoctonia solani anastomosis group 8. Mycol Res 99:745–750Google Scholar
  33. McHale MT, Roberts IN, Noble SM, Beaumont C, Whitehead MP, Seth D, Oliver RP (1992) CfT1: an LTR-retrotransposon inCladosporium fulvum, a fungal pathogen of tomato. Mol Gen Genet 233:337–347PubMedGoogle Scholar
  34. Mills PR, Sreenivasaprasad S, Brown AE (1992) Detection and differentiation ofColletotrichum gloeosporioides isolates using PCR. FEMS Letts 98:137–144CrossRefGoogle Scholar
  35. Mizrokhi LJ, Mazo AM (1990) Evidence for horizontal transmission of the mobile elementjockey between distantDrosophila species. Proc Natl Acad Sci USA 87:9216–9220PubMedGoogle Scholar
  36. Sandmeyer SB, Hansen LJ, Chalker DL (1990) Integration specificity of retrotransposons and retroviruses. Annu Rev Genet 24:491–518CrossRefPubMedGoogle Scholar
  37. Sherriff C, Whelan MJ, Arnold GM, Lafay J-F, Brygoo Y, Bailey JA (1994) Ribosomal DNA sequence analysis reveals new species groupings in the genusColletotrichum. Exp Mycol 18:121–138CrossRefGoogle Scholar
  38. Shull V, Hamer JE (1995) Genomic structure and variability inPyricularia grisea. In: Zeigler RS, Leong SA, Teng PS (Eds) Rice blast disease. CAB International, Oxford, pp 65–86Google Scholar
  39. Singer MF, Skowronski J (1985) Making sense out of LINEs: long interspersed repeat sequences in mammalian genomes. Trends Biochem Sci 10:119–122CrossRefGoogle Scholar
  40. Skipp RA, Beever RE, Sharrock KR, Rikkerink EHA, Templeton MD (1995)Colletotrichum. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular bases. Vol 2, Eukaryotes. Pergamon Press, Oxford, pp 119–143Google Scholar
  41. Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus,Magnaporthe grisea. Ann Phytopathol 29:443–467CrossRefGoogle Scholar
  42. Xiong Y, Eickbush TH (1988) The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol Cell Biol 8:114–123PubMedGoogle Scholar
  43. Yuki S, Inouye Y, Ishimura S, Saigo K (1986) Nucleotide sequence characterisation of aDrosophila retrotransposon412. Eur J Biochem 158:403–410CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • C. He
    • 1
  • J. P. Nourse
    • 1
  • J. A. G. Irwin
    • 1
  • J. M. Manners
    • 1
  • S. Kelemu
    • 2
  1. 1.Cooperative Research Centre for Tropical Plant PathologyThe University of QueenslandBrisbaneAustralia
  2. 2.Centro Internacional de Agricultura TropicalCaliColombia

Personalised recommendations