Advertisement

UV-absorbing intraocular lenses: Safety, efficacy, and consequences for the cataract patient

  • John S. Werner
  • Lothar Spillmann
Laboratory Investigations

Abstract

The crystalline lens absorbs most of the incident UV radiation between 300 and 400 nm and thereby protects the retina from a significant, potential source of photochemical damage. This protection is lost when the lens is removed by cataract surgery, but can be restored by the implantation of an intraocular lens (IOL) that has UV-absorbing chromophores incorporated into a polymethylmethacrylate (PMMA) substrate. Spectrophotometric data show that the various, commercially available, UV-absorbing IOLs are not equally effective in absorbing UV radiation; thus, a standard, quantitative metric for comparing their performance is proposed. Cytotoxicity and biocompatibility studies have failed to demonstrate that UV-absorbing IOLs are unsafe, even when damaged by Nd:YAG lasers used for photodiscission posterior capsulotomy. There are positive consequences for the pseudophakic patient with a UV-absorbing IOL, in that it may restore normal spectral sensitivity, reduce erythropsia and cystoid macular edema, and stabilize the blood-vitreous barrier.

Keywords

Retina PMMA Cataract Polymethylmethacrylate Cataract Surgery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpar JJ, Fechner PU (1986) Fechner's intraocular lenses. Thieme, New YorkGoogle Scholar
  2. 2.
    Bath PE, Brown P, Romberger A, Quon D (1986) Quantitative concepts in avoiding intraocular lens damage from the Nd:YAG laser in posterior capsulotomy. J Cataract Refract Surg 12:262–266Google Scholar
  3. 3.
    Berler DK, Peyser R (1983) Light intensity and visual acuity following cataract surgery. Ophthalmology 90:933–936Google Scholar
  4. 4.
    Boettner EA, Wolter JR (1962) Transmission of the ocular media. Invest Ophthalmol 1:776–783Google Scholar
  5. 5.
    Brandhorst H, Hickey J, Curtis H, Ralph E (1975) Interim solar cell testing procedures for terrestial applications. NASA Report TM X-71771, Lewis Research CenterGoogle Scholar
  6. 6.
    Brilliant LB, Grasset NC, Pokhrel RP, Kolstad A, Lepkowski JM, Brilliant GE, Hawks WN, Pararajasegaram R (1983) Associations among cataract prevalence, sunlight hours, and altitude in the Himalayas. Am J Epidemiol 118:250–264Google Scholar
  7. 7.
    Busse H, Popp E, Curschmann J (1986) Zur Implantation UV-absorbierender Hinterkammerlinsen. Klin Monatsbl Augenheilkd 189:330–333Google Scholar
  8. 8.
    Calkins JL, Hochheimer BF (1979) Retinal light exposure from operation microscopes. Arch Ophthalmol 97:2363–2367Google Scholar
  9. 9.
    Clark B, Johnson ML, Driker RE (1946) The effect of sunlight on dark adaptation. Am J Ophthalmol 29:828–836Google Scholar
  10. 10.
    Commoner B, Ternberg JL (1961) Free radicals in surviving tissues. Proc Natl Acad Sci USA 47:1374–1384Google Scholar
  11. 11.
    Cooper GF, Robson JG (1969) The yellow colour of the lens of man and other primates. J Physiol 203:411–417Google Scholar
  12. 12.
    Cutchis P (1974) Stratospheric ozone depletion and solar ultraviolet radiation on earth. Science 84:13–19Google Scholar
  13. 13.
    Dayhaw-Barker P, Forbes D, Fox D, Lerman S, McGinness J, Waxler M, Felten R (1986) Drug phototoxicity and visual health. In: Waxler M, Hitchins VM (eds) Optical radiation and visual health. CRC Press, Boca Raton, FlaGoogle Scholar
  14. 14.
    DeLuisi JJ, Harris JM (1983) A determination of the absolute energy of a Robertson-Berger meter sunburn unit. Atmos Environ 17:751–758Google Scholar
  15. 15.
    Fishman GA (1986) Ocular phototoxicity: guidelines for selecting sunglasses. Surv Ophthalmol 31:119–124Google Scholar
  16. 16.
    Food and Drug Administration (1980) Guidelines for intraocular lenses. FDA Center for Devices and Radiological Health, Washington, DCGoogle Scholar
  17. 17.
    Friedman E, Kuwabara T (1968) The retinal pigment epithelium: IV. The damaging effects of radiant energy. Arch Ophthalmol 80:265–279Google Scholar
  18. 18.
    Grams H (1985) Tests for leachability of UV chromophores in PMMA lenses: what do the results really mean? Intraocul Insights 1:1–4Google Scholar
  19. 19.
    Griess GA, Blankenstein MF (1981) Additivity and repair of actinic retinal lesions. Invest Ophthalmol Vis Sci 20:803–807Google Scholar
  20. 20.
    Gupta A (1984) Long-term aging behavior of ultraviolet-absorbing intraocular lenses. Am Intraocular Implant Soc J 10:309–314Google Scholar
  21. 21.
    Gupta A, Yavrouian A, di Stefano S, Merritt CD, Scott GW (1980) Photophysical and photochemical properties of poly(2-hydroxy-3-allyl-4,4′-dimethoxybenzophenone-co-methyl methacrylate): photochemical processes in polymeric systems. Macromolecules 13: 821–825Google Scholar
  22. 22.
    Ham WT, Mueller HA, Ruffolo JJ, Guerry D (1980) Solar retinopathy as a function of wavelength: its significance for protective eyewear. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum Press, New YorkGoogle Scholar
  23. 23.
    Ham WT, Mueller HA, Ruffolo JJ, Guerry D, Guerry RK (1982) Action spectrum for retinal injury from near-ultraviolet radiation in the aphakic monkey. Am J Ophthalmol 93:299–306Google Scholar
  24. 24.
    Ham WT, Allen RG, Feeney-Burns L, Marmor MF, Parver LM, Proctor PH, Sliney DH, Wolbarsht ML (1986) The involvement of the retinal pigment epithelium (RPE). In: Waxler M, Hitchins VM (eds) Optical radiation and visual health. CRC Press, Boca Raton, FlaGoogle Scholar
  25. 25.
    Harwerth RS, Sperling HG (1975) Effects of intense visible radiation on the increment-threshold spectral sensitivity of the rhesus monkey eye. Vision Res 15:1193–1204Google Scholar
  26. 26.
    Headon MP, Jacobs NA, Rosen ES (1986) Solar hazard: eclipse viewing in Manchester. In: Cronly-Dillon J, Rosen ES, Marshall J (eds) Hazards of light. Pergamon Press, OxfordGoogle Scholar
  27. 27.
    Hiller R, Giacometti L, Yuen K (1977) Sunlight and cataract: an epidemiologic investigation. Am J Epidemiol 105:450–459Google Scholar
  28. 28.
    Holladay JT, Bishop JE, Prager TC, Balker JW (1983) The ideal intraocular lens. CLAO J 9:15–19Google Scholar
  29. 29.
    Hollows F, Moran D (1981) Cataract — the ultraviolet risk factor. Lancet II: 1249–1250Google Scholar
  30. 30.
    Johnson FS, Mo T, Green AES (1976) Average latitudinal variation in ultraviolet radiation at the earth's surface. Photochem Photobiol 23:179–188Google Scholar
  31. 31.
    Jordan DR, Valberg JD (1986) Dychromatopsia following cataract surgery. Can J Ophthalmol 21:140–143Google Scholar
  32. 32.
    Keates RH, Genstler DE, Tarabichi S (1982) Ultraviolet light transmission of the lens capsule. Ophthalmic Surg 13:374–376Google Scholar
  33. 33.
    Kirkness CM, Weale RA (1985) Does light pose a hazard to the macula in aphakia? Trans Ophthalmol Soc UK 104:699–702Google Scholar
  34. 34.
    Kirschfeld K (1982) Carotenoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells. Proc R Soc London Ser B 216:71–85Google Scholar
  35. 35.
    Kraff MC, Sanders DR, Jampol LM, Lieberman HL (1985) Effect of an ultraviolet-filtering intraocular lens on cystoid macular edema. Ophthalmology 92:366–369Google Scholar
  36. 36.
    Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51:649–660Google Scholar
  37. 37.
    Lappin GR (1971) Ultraviolet radiation absorbers. In: Bikales NM (ed) Encyclopedia of polymer science and technology, vol 14. Wiley, New YorkGoogle Scholar
  38. 38.
    Lawwill T (1982) Three major pathologic processes caused by light in the primate retina: a search for mechanisms. Trans Am Ophthalmol Soc 88:518–579Google Scholar
  39. 39.
    Lawwill T, Crockett RS, Currier G (1977) Retinal damage secondary to chronic light exposure. Doc Ophthalmol 44:379–402Google Scholar
  40. 40.
    Lerman S (1984) Biophysical aspects of corneal and lenticular transparency. Curr Eye Res 3:3–14Google Scholar
  41. 41.
    Lerman S (1986) In vivo and in vitro biophysical studies on human cataractogenesis. Lens Res 3:137–160Google Scholar
  42. 42.
    Lerman S, Borkman R (1976) Spectroscopic evaluation and classification of the normal, aging and cataractous lens. Ophthalmic Res 8:335–353Google Scholar
  43. 43.
    Lindstrom RL, Doddi N (1986) Ultraviolet light absorption in intraocular lenses. J Cataract Refract Surg 12:285–289Google Scholar
  44. 44.
    Lindstrom RL, Skelnik DL, Mowbray SL (1985) Neodymium: YAG laser interaction with intraocular lenses: an in vitro toxicity assay. Am Intraocular Implant Soc J 11:558–563Google Scholar
  45. 45.
    MacFaul PA (1969) Visual prognosis after solar retinopathy. Br J Ophthalmol 53: 534–541Google Scholar
  46. 46.
    Mainster MA (1978) Spectral transmittance of intraocular lenses and retinal damage from intense light sources. Am J Ophthalmol 85:167–170Google Scholar
  47. 47.
    Mainster MA (1986) The spectra, classification, and rationale of ultraviolet-protective intraocular lenses. Am J Ophthalmol 102:727–732Google Scholar
  48. 48.
    Mainster MA, Ham WT, Delori F (1983) Potential retinal hazards: instrument and environmental light sources. Ophthalmology 90:927–931Google Scholar
  49. 49.
    Malik S, Cohen D, Meyer E, Perlman I (1986) Light damage in the developing retina of the albino rat: an electroretinographic study. Invest Ophthalmol Vis Sci 27:164–167Google Scholar
  50. 50.
    Marshall J (1978) Ageing changes in human cones. XXIII Concilium Ophthalmologicum. Elsevier/North Holland, AmsterdamGoogle Scholar
  51. 51.
    Marshall J (1983) Light damage and the practice of ophthalmology. In: Rosen ES, Maining WM, Arnott EJ (eds) Intraocular lens implantation. Mosby, St. LouisGoogle Scholar
  52. 52.
    Massof RW, Sykes SM, Rapp LM, Robison WG, Zwick H, Hochheimer B (1986) Optical radiation damage to the ocular photoreceptors. In: Waxler M, Hitchins VM (eds) Optical radiation and visual health. CRC Press, Boca Raton, FlaGoogle Scholar
  53. 53.
    McIntyre DJ (1985) Statistics on CME and UV lenses — 3 years. Paper presented at the American Intraocular Implant Society Meeting, Boston, April 1985Google Scholar
  54. 54.
    Miller D (1987) Chap 4: Light and the cornea and conjunctiva. Chap 8: Ultraviolet-absorbing intraocular lens implants. In: Miller D (ed) Clinical light damage to the eye. Springer, New York Berlin HeidelbergGoogle Scholar
  55. 55.
    Miyake E (1985) Effects of IOL fixation of the blood-ocular barrier: Long-term follow-up studies. Paper presented at the American Intraocular Implant Society Meeting, Boston, April 1985Google Scholar
  56. 56.
    Nash K (1986) Are UV IOLs performing well? What about long-term effects? Ophthalmology Times, 1 August, p 38Google Scholar
  57. 57.
    Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5:459–473Google Scholar
  58. 58.
    Norren DV, Vos JJ (1974) Spectral transmission of the human ocular media. Vision Res 14:1237–1244Google Scholar
  59. 59.
    O'Steen WK, Anderson KC, Shear CR (1974) Photoreceptor degradation in albino rats: dependency on age. Invest Ophthalmol 13:334–339Google Scholar
  60. 60.
    Parver LM, Auker CR, Carpenter DO (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646Google Scholar
  61. 61.
    Peyman GA, Sloan HD, Lim J (1982) Ultraviolet light absorbing pseudophakos. Am Intraocular Implant Soc J 8:357–360Google Scholar
  62. 62.
    Peyman GA, Zak R, Sloane H (1983) Ultraviolet-absorbing pseudophakos: an efficacy study. Am Intraocular Implant Soc J 9:161–170Google Scholar
  63. 63.
    Pitts DG, Cullen AP, Hacker PD, Parr WH (1977) Ocular ultraviolet effects from 295 nm to 400 nm in the rabbit eye. U.S. Department of Health, Education and Welfare, (NIOSH) Publ. No. 77-175, Washington, DCGoogle Scholar
  64. 64.
    Pitts DG, Cameron LL, Jose JG, Lerman S, Moss E, Varma SD, Zigler S, Zigman S, Zuclich J (1986) Optical radiation and cataracts. In: Waxler M, Hitchins VM (eds) Optical radiation and visual health. CRC Press, Boca Raton, FlaGoogle Scholar
  65. 65.
    Ranby B, Rabek JF (1975) Photodegradation, photo-oxidation and photostabilization of polymers. Wiley, New YorkGoogle Scholar
  66. 66.
    Ridley F (1957) Safety requirements for acrylic implants. Br J Ophthalmol 41:359–369Google Scholar
  67. 67.
    Rosenthal FS, Safran M, Taylor HR (1985) The ocular dose of ultraviolet radiation from sunlight exposure. Photochem Photobiol 42:163–171Google Scholar
  68. 68.
    Said FS, Weale RA (1959) The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontology 3:213–231Google Scholar
  69. 69.
    Sliney DH (1986) Defining biological exposures to light. In: Cronly-Dillon J, Rosen ES, Marshall J (eds) Hazards of light. Pergamon Press, OxfordGoogle Scholar
  70. 70.
    Sperling HG (ed) (1980) Intense light hazards in ophthalmic diagnosis and treatment: proceedings of a symposium. Vision Res 20:1033-1203Google Scholar
  71. 71.
    Sperling HG (1986) Spectral sensitivity, intense spectral light studies and the color receptor mosaic of primates. Vision Res 26:1557–1571Google Scholar
  72. 72.
    Sykes SM, Robison WG, Waxler M, Kuwabara T (1981) Damage to the monkey retina by broad-spectrum fluorescent light. Invest Ophthalmol Vis Sci 20:425–434Google Scholar
  73. 73.
    Taylor HR (1980) The environment and the lens. Br J Ophthalmol 64:303–310Google Scholar
  74. 74.
    Terry AC, Stark WJ, Maumenee AE, Fagadau W (1983) Neodymium-YAG laser for posterior capsulotomy. Am J Ophthalmol 96:716–720Google Scholar
  75. 75.
    Terry AC, Stark WJ, Newsome DA, Maumenee AE, Pina E (1985) Tissue toxicity of laser-damaged intraocular lens implants. Ophthalmology 92:414–418Google Scholar
  76. 76.
    Tso MOM, La Piana FG (1975) The human fovea after sungazing. Trans Am Acad Ophthalmol Otolaryngol 79:788–795Google Scholar
  77. 77.
    Vos JJ (1962) A theory of retinal burns. Bull Math Biophys 24:115–128Google Scholar
  78. 78.
    Waxler M, Hitchins VM (eds) (1986) Optical radiation and visual health. CRC Press, Boca Raton, FlaGoogle Scholar
  79. 79.
    Weale RA (1982) The age variation of ‘senile’ cataract in various parts of the world. Br J Ophthalmol 66:31–34Google Scholar
  80. 80.
    Weale RA (1988) Age and the transmittance of the human crystalline lens. J Physiol 395: 577–587Google Scholar
  81. 81.
    Werner JS (1982) Development of scotopic sensitivity and the absorption spectrum of the human ocular media. J Opt Soc Am 72:247–258Google Scholar
  82. 82.
    Werner JS, Hardenbergh FE (1983) Spectral sensitivity of the pseudophakic eye. Arch Ophthalmol 101:758–760Google Scholar
  83. 83.
    Williams TP, Baker BN (eds) (1980) The effects of constant light on visual processes. Plenum Press, New YorkGoogle Scholar
  84. 84.
    Young RW (1976) Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci 15: 700–725Google Scholar
  85. 85.
    Young RW (1981) A theory of retinal disease. In: Sears ML (ed) New directions in ophthalmic research. Yale University Press, New HavenGoogle Scholar
  86. 86.
    Young RW (1982) The Bowman lecture, 1982 Biological renewal. Applications to the eye. Trans Ophthalmol Soc UK 102:42–75Google Scholar
  87. 87.
    Young RW (1988) Solar radiation and age-related macular degeneration. Surv Ophthalmol 32:252–269Google Scholar
  88. 88.
    Zigman S, Vaughan T (1974) Near-ultraviolet light effects on the lenses and retinas of mice. Invest Ophthalmol Vis Sci 13:462–465Google Scholar
  89. 89.
    Zigman S, Datiles M, Torczynski E (1979) Sunlight and human cataracts. Invest Ophthalmol Vis Sci 18:462–467Google Scholar
  90. 90.
    Zrenner E, Lund O-E (1984) Die erhöhte Strahlungsbelastung der Netzhaut nach Implantation intraokularer Linsen und ihre Behebung durch farblose Filtergläser. Klin Monatsbl Augenheilkd 184:193–196Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • John S. Werner
    • 1
  • Lothar Spillmann
    • 2
  1. 1.Department of PsychologyUniversity of ColoradoBoulderUSA
  2. 2.Abteilung Klinische Neurologie und Neurophysiologie der UniversitätFreiburgFederal Republic of Germany

Personalised recommendations