Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On a comparison of real with complex involutive complete algebras

  • 19 Accesses

  • 4 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. F. Arens, “Representations of *-algebras,”Duke Math. J.,14, 269–282 (1947);Proc. Natl. Acad. Sci. U.S.A.,32, 237–239 (1946).

  2. 2.

    B. Banaschewski, “The duality betweenM-spaces and compact Hausdorff spaces,”Math. Nachr.,75, 41–45 (1976).

  3. 3.

    F. F. Bonsall and J. Duncan,Complete Normed Algebras, Ergebnisse der Mathematik, No. 80, Springer-Verlag, Berlin (1973).

  4. 4.

    J. Dixmier,Les C *-algèbres et leurs représentations, Gauthier Villars, Paris (1969).

  5. 5.

    Normierte Ringe,Mat. Sb., N.S.,9, 3–24 (1941);Dokl. Akad. Nauk SSSR,23, 430–432 (1939).

  6. 6.

    I. M. Gel'fand and N. A. Naimark, “On the embedding of normed rings into the ring of operators in Hilbert space,”Mat. Sb., N.S.,12, 197–213 (1943).

  7. 7.

    L. Ingelstam, “Real Banach algebras,”Ark. för Mat.,5, 239–270 (1964).

  8. 8.

    J. R. Isbell,The unit ball of C(X) as an abstract algebra, Notes from lectures delivered at the Banach Center in Warsaw (1974).

  9. 9.

    J. Lambek and B. A. Rattray, “A general Stone-Gel'fand duality,”Trans. Amer. Math. Soc.,248, 1–35 (1979).

  10. 10.

    S. MacLane,Categories for the Working Mathematician, GTM5, Springer-Verlag, Berlin (1971).

  11. 11.

    A. Mallios,Topological Algebras. Selected Topics, Math. Stud., Vol. 124, North-Holland, Amsterdam (1986).

  12. 12.

    S. Mazur, “Sur les anneaux linéaires,”C. R. Acad. Sci. Paris, Ser. A-B,207, 1025–1027 (1938).

  13. 13.

    G. F. Nassopoulos, “Duality and functional representations of certain complete algebras,”Prakt. Akad. Athenon,56, 327–338 (1981).

  14. 14.

    G. F. Nassopoulos,The duality between locally C *-algebras and filtered spaces. Cambridge Summer Meeting in Category Theory, 1981.

  15. 15.

    H. E. Porst and M. B. Wischnewsky, “Every topological category is convenient for Gel'fand duality,”Manuscr. Math.,25, 169–204 (1978).

  16. 16.

    I. E. Segal, “Representation of certain commutative Banach algebras,”Bull. Amer. Math. Soc.,52, 421–422 (1946).

  17. 17.

    A. Sinclair,Automatic Continuity of Linear Operators, Lecture Notes Scries No. 21, London Math. Soc., London (1977).

  18. 18.

    I. M. Singer and J. Wermer, “Derivations on commutative nonned algebras,”Math. Ann.,129, 260–264 (1955).

  19. 19.

    M. H. Stone, “A general theory of spectra, I, II,”Proc. Natl. Acad. Sci. U.S.A.,26, 280–283 (1940);27, 83–87 (1941).

  20. 20.

    M. Takesaki,Theory of Operator Algebras, Springer-Verlag, Berlin (1979).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 49, Functional Analysis-4, 1997.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nassopoulos, G.F. On a comparison of real with complex involutive complete algebras. J Math Sci 96, 3755–3765 (1999). https://doi.org/10.1007/BF02172669

Download citation

Keywords

  • Complete Algebra