Journal of Mathematical Sciences

, Volume 95, Issue 3, pp 2295–2316

Fourier coefficients of cusp forms and automorphic f-functions

  • O. M. Fomenko


In the beginning of the paper, we review the summation formulas for the Fourier coefficients of holomorphic cusp forms for γ, γ=SL(2,ℤ), associated with L-functions of three and four Hecke eigenforms. Continuing the known works on the L-functions Lf,ϕ,ψ(s) of three Hecke eigenforms, we prove their new properties in the special case of Lf,ϕ,ψ(s). These results are applied to proving an analogue of the Siegel theorem for the L-function Lf(s) of the Hecke eigenform f(z) for γ (with respect to weight) and to deriving a new summation formula. Let f(z) be a Hecke eigenform for γ of even weight 2k with Fourier expansion\(f(z) = \Sigma _{n = 1}^\infty a(n)e^{2\pi inz} \). We study a weight-uniform analogue of the Hardy problem on the behavior of the sum ⌆p≤xa(p) log p and prove new estimates from above for the sum ⌆n≤xa(F(n))2, where F(x) is a polynomial with integral coefficients of special form (in particular, F(x) is an Abelian polynomial). Finally, we obtain the lower estimate
$$L_4 (1) + |L'_4 (1)| \gg \frac{1}{{(\log k)^c }},$$
where L4(s) is the fourth symmetric power of the L-function Lf(s) and c is a constant. Bibliography: 43 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Hecke, “über Modulfunktionen und Dirichletschen Reihen mit Eulerscher Produktentwicklung, I, II,”Math. Ann.,114, 1–28; 316–351 (1937);Mathematische Werke, Göttingen (1983), pp. 644–671; 672–707.Google Scholar
  2. 2.
    A. Walficz, “über die Koeffizientensummen einiger Modulformen,”Math. Ann.,108, 75–90 (1933).Google Scholar
  3. 3.
    P. Deligne, “La conjecture de Weil, I,”Publ. Math. Inst. Hautes études Sci.,43, 273–307 (1974).Google Scholar
  4. 4.
    R. A. Rankin, “Contributions to the theory of Ramanujan's function Τ(n) and similar arithmetical functions, I, II,”Proc. Cambridge Philos. Soc.,35, 351–356; 357–372 (1939).Google Scholar
  5. 5.
    A. Selberg, “Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist,”Arch. Math. Naturvid.,43, 47–50 (1940);Collected Papers, Vol. I, Berlin (1989), pp. 38–41.Google Scholar
  6. 6.
    A. P. Ogg, “On a convolution ofL-series,”Invent. Math.,7, 297–312 (1969).Google Scholar
  7. 7.
    R. A. Rankin, “Sums of powers of cusp form coefficients, II,”Math. Ann.,272, 593–600 (1985).Google Scholar
  8. 8.
    R. P. Langlands,Euler Products (James K. Whitmore Lectures), Yale Univ. Press (1967).Google Scholar
  9. 9.
    G. Shimura, “On the holomorphy of certain Dirichlet series,”Proc. London Math. Soc.,31, 79–98 (1975).Google Scholar
  10. 10.
    S. Gelbart, “Automorphic forms and Artin's conjecture,”Lect. Notes Math.,627, 241–276 (1977).Google Scholar
  11. 11.
    S. Gelbart and H. Jacquet, “A relation between automorphic representations of GL(2) and GL(3),”Ann. Sci. école Norm. Sup., 4 e série,11, 471–552 (1978).Google Scholar
  12. 12.
    F. Shahidi, “Functional equation satisied by certainL-functions,”Compos. Math.,37, 171–207 (1978).Google Scholar
  13. 13.
    F. Shahidi, “On certainL-functions,”Am. J. Math.,103, 297–355 (1981).Google Scholar
  14. 14.
    C. J. Moreno and F. Shahidi, “The fourth moment of the RamanujanΤ-function,”Math. Ann.,266, 233–239 (1983).Google Scholar
  15. 15.
    M. R. Murty, “Oscillations of Fourier coefficients of modular forms,”Math. Ann.,262, 431–446 (1983).Google Scholar
  16. 16.
    P. B. Garrett, “Decomposition of Eisenstein series: Rankin triple product,”Ann. Math.,125, 209–235 (1987).Google Scholar
  17. 17.
    W. C. W. Li, “Newforms and functional equations,”Math. Ann.,212, 285–315 (1975).Google Scholar
  18. 18.
    T. Orloff, “Special values and mixed weight triple products (with an Appendix by Don Blasius),”Invent. Math.,90, 169–180 (1987).Google Scholar
  19. 19.
    T. Satoh, “Some remarks on tripleL-functions,”Math. Ann.,276, 687–698 (1987).Google Scholar
  20. 20.
    I. Piatetski-Shapiro and S. Rallis, “Rankin tripleL-functions,”Compos. Math.,64, 31–115 (1987).Google Scholar
  21. 21.
    G. Shimura, “The special values of the zeta functions associated with cusp forms,”Commun. Pure Appl. Math.,29, 783–804 (1976).Google Scholar
  22. 22.
    F. Shahidi, “Third symmetric powerL-functions for GL(2),”Compos. Math.,70, 245–273 (1989).Google Scholar
  23. 23.
    J. Hoffstein and P. Lockhart, “Coefficients of Maass forms and the Siegel zero,”Ann. Math.,140, 161–181 (1994).Google Scholar
  24. 24.
    H. Jacquet, I. Piatetski-Shapiro, and J. Shalika, “Rankin-Selberg convolutions,”Am. J. Math.,105, 367–464 (1983).Google Scholar
  25. 25.
    H. Jacquet and J. Shalika, “Rankin-Selberg convolutions: archimedean theory,”Weizmann Inst. Sci,1, 125–208 (1990).Google Scholar
  26. 26.
    C. Moeglin and J. L. Waldspurger, “Le spectre résiduel de GL(n),”Ann. Sci. école Norm. Sup., 4 e série,22, 605–674 (1989).Google Scholar
  27. 27.
    D. Bump and D. Ginzburg, “Symmetric squareL-functions on GL(r),”Ann. Math.,136, 137–205 (1992).Google Scholar
  28. 28.
    N. Kurokawa, “On the meromorphy of Euler products, I, II,”Proc. London Math. Soc.,53, 1–47; 209–236 (1986).Google Scholar
  29. 29.
    Yu. V. Linnik, “Additive problems and eigenvalues of the modular operators,” in:Proc. Internat. Congr. Math. Aug. 1962, Djursholm, Uppsala (1963), pp. 270–284.Google Scholar
  30. 30.
    A. N. Andrianov and O. M. Fomenko, “On the mean square in progressions of the Fourier coefficients of cusp forms,”Trudy Mat. Inst. Akad. Nauk SSSR,80, 5–15 (1965).Google Scholar
  31. 31.
    M. B. Barban, “The “large sieve” method and its applications to number theory,”Usp. Mat. Nauk,21, 51–102 (1966).Google Scholar
  32. 32.
    M. B. Barban and P. P. Vekhov, “Summation of multiplicative functions of polynomials,”Mat. Zametki,5, 669–680 (1969).Google Scholar
  33. 33.
    P. Erdös, “On the sum\(\sum\limits_{k = 1}^x {d(f(k))} \) d(f(k)),”J. London Math. Soc.,27, 7–15 (1952).Google Scholar
  34. 34.
    M. Koike, “Higher reciprocity law, modular forms of weight 1, and elliptic curves,”Nagoya Math. J.,98, 109–115 (1985).Google Scholar
  35. 35.
    N. Ishii, “Cusp forms of weight one, quadratic reciprocity, and elliptic curves,”Nagoya Math. J.,98, 117–137 (1985).Google Scholar
  36. 36.
    W. Duke and H. Iwaniec, “ConvolutionL-series,”Compos. Math.,91, 145–158 (1994).Google Scholar
  37. 37.
    E. P. Golubeva and O. M. Fomenko, “Behavior of theL-functions of cusp forms at s=1,”Zap. Nauchn. Semin. POMI,204, 37–54 (1993).Google Scholar
  38. 38.
    H. Davenport,Multiplicative Number Theory, Springer-Verlag, New York (1980).Google Scholar
  39. 39.
    H. Iwaniec, “Small eigenvalues of Laplacian for γ0(N),”Acta Arithm.,56, 65–82 (1990).Google Scholar
  40. 40.
    H. Iwaniec, “The spectral growth of authomorphicL-functions,”J. Reine Angew. Math.,428, 139–159 (1992).Google Scholar
  41. 41.
    G. H. Hardy,Ramanujan, Cambridge (1940).Google Scholar
  42. 42.
    C. J. Moreno, “Prime number theorems for the coefficients of modular forms,”Bull. Am. Math. Soc.,78, 796–798 (1972).Google Scholar
  43. 43.
    C. J. Moreno, “Explicit formulas in the theory of automorphic forms,”Lect. Notes Math.,636, 73–216 (1977).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • O. M. Fomenko

There are no affiliations available

Personalised recommendations