, Volume 5, Issue 3, pp 167–176

Selective activation of extrathymic T cells in the liver by glycyrrhizin

  • Motohiko Kimura
  • Hisami Watanabe
  • Toru Abo


Extrathymic pathways for T cell differentiation were recently demonstrated in the liver, intestine and omentum. In this study, glycyrrhizin (GL), a plant extract was investigated as to its effect on extrathymic T cells in the liver of mice. A new method using anti-LFA-1 mAb in conjunction with anti-TCR or -CD3 mAbs to sensitively identify such extrathymic T cells is included. Single injection and repeated injections of GL increased not only the number of total hepatic MNC but also the proportion of intermediate TCR cells, which are extrathymic T cells uniquely seen in the liver. In contrast to other tested reagents (e.g., lymphotoxin and estrogen) that activated the extrathymic T cells and simultaneously induced profound thymic atrophy, GL did not affect regular T cells in the thymus. The present results suggest that the selective activation of extrathymic T cells in the liver might be intimately related to the clinical effects of GL.

Key words

extrathymic T cells glycyrrhizin liver 



T cell receptor


monoclonal antibody






major histocompatibility complex


mononuclear cells


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kappler JW, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell 1987; 49: 273–280.Google Scholar
  2. 2.
    Kisielow P, Bluthmann H, Staerz UD, Steinmmentz M, von Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 1988; 333: 742–746.Google Scholar
  3. 3.
    Teh HS, Kisielow P, Scott B, Kishi H, Uematsu Y, Bluthmann H, von Boehmer H. Thymic major histocompatibility complex antigens and theαβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 1988; 335: 229–233.Google Scholar
  4. 4.
    Smith CA, Williams GT, Kingston R, Jenkinson EJ, Owen JT. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymiccultures. Nature 1989; 337: 181–184.Google Scholar
  5. 5.
    Finkel TH, Cambier JC, Kubo RT, Born WK, Marrack P, Kappler JW. The thymus has two functionally distinct populations of immatureαβ + T cells: One population is deleted by ligation of aPTCR. Cell 1989; 58: 1047–1054.Google Scholar
  6. 6.
    Ohteki T, Seki S, Abo T, Kumagai K. Liver is a possible site for the proliferation of abnormal CD3+48 doublenegative lymphocytes in autoimmune MRL-1pr/1pr mice. J Exp Med 1990; 172: 7–12.Google Scholar
  7. 7.
    Seki S, Abo T, Masuda T, Ohteki T, Kanno A, Takeda K, Rikiishi H, Nagura H, Kumagai K. Identification of activated T cell receptor γδ lymphocytes in the lever of tumor-bearing hosts. J Clin Invest 1990; 86: 409–415.Google Scholar
  8. 8.
    Bandeira A, Itohara S, Bonneville M, Burlen-Defranoux O, Mota-Santos T, Coutinho A, Tonegawa S. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor γδ. Proc Natl Acad Sci USA 1991; 88: 43–47.Google Scholar
  9. 9.
    Guy-Grand D, Cerf-Bensussan N, Malissen B, Malassis Seris M, Briottet C, Vassalli P. Two gut intraepithelial CD8 lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J Exp Med 1991; 173: 417–481.Google Scholar
  10. 10.
    Rocha B, Vassalli P, Guy-Grand D. The Vβ repertoire of mouse gut homodimericα CD8+ intraepithelial T cell receptorα/gb′ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J Exp Med 1991; 173:483–486.Google Scholar
  11. 11.
    Andreu-Sanchez JL, de Alboran IM, Marcos MAR, Sanchez-Movilla A, Martinez-A C, Kroemer G. Interleukin 2 abrogates the nonresponsive state of T cells expressing a forbidden T cell receptor repertoire and induces autoimmune diseases in neonatally thymectomized mice. J Exp Med 1991; 173: 1323–1329.Google Scholar
  12. 12.
    Ohteki T, Abo T, Seki S, Kobata T, Yagita H, Okumura K, Kumagai K. Predominant appearance of γ/δ lymphocytes in the liver of mice after birth. Eur J Immunol 1991; 21: 1733–1740.Google Scholar
  13. 13.
    Abo T, Ohteki T, Seki S, Koyamada N, Yoshikai Y, Masuda T, Rikiishi H, Kumagai K. The appearance of T cells bearing self-reactive T cell receptor in the livers of mice injected with bacteria. J Exp Med 1991; 174: 417–424.Google Scholar
  14. 14.
    Seki S, Abo T, Sugiura K, Ohteki T, Kobata T, Yagita H, Okumura K, Rikiishi H, Masuda T, Kumagai K. Reciprocal T cell responses in the liver and thymus of mice injected with syngeneic tumor cells. Cell Immunol 1991; 137: 46–60.Google Scholar
  15. 15.
    Seki S, Abo T, Ohteki T, Sugiura K, Kumagai K. Unusual αβ T cells expanded in autoimmunelpr mice are probably a counterpart of normal T cells in the liver. J Immunol 1991; 147: 1214–1221.Google Scholar
  16. 16.
    Masuda T, Ohteki T, Abo T, Seki S, Nose M, Nagura H, Kumagai K. Expansion of the population of double negative CD48 αβ T cells in the liver is a common feature of autoimmune mice. J Immunol 1991; 147: 2907–2912.Google Scholar
  17. 17.
    Watanabe H, Ohtsuka K, Kimura M, Ikarashi Y, Ohmori T, Kusumi A, Ohteki T, Seki S, Abo T. Details of an isolation method for hepatic lymphocytes in mice. J Immunol Methods, 1992; 146: 145–154.Google Scholar
  18. 18.
    Baba M, Shigeta S. Antiviral activity of glycyrrhizin against varicella-zoster virusin vitro. Antiviral Res 1987; 7: 99–107.Google Scholar
  19. 19.
    Ito M, Nakashima H, Baba M, Pauwel R, De Clercq E, Shigeta S, Yamamoto N. Inhibitory effect of glycyrrhizin on thein vitro infectivity and cytopathic activity of the human immunodeficiency virus [HIV(HTLV III/LAV)]. Antiviral Res 1987; 7: 127–137.Google Scholar
  20. 20.
    Mori K, Sakai H, Suzuki S, Sugai K, Akutsu Y, Ishikawa M, Seino Y, Ishida N, Uchida T, Kariyone S, Endo Y, Miura A. Effect of glycyrrhizin (SNMC: Stronger Neominophagen C) in hemophilia patients with HIV infection. Tohoku J Exp Med 1989; 158: 25–35.Google Scholar
  21. 21.
    Itoh M, Sato A, Hirobayashi K, Tanabe F, Shigeta S, Baba M, Clercq ED, Nakashima H, Yamamoto N. Mechanism of inhibitory effect of glycyrrhizin on replication of human immunodeficiency virus (HIV). Antiviral Res 1988; 10: 289–298.Google Scholar
  22. 22.
    Mori K, Sakai H, Suzuki S, Akutzu Y, Ishikawa M, Imaizumi M, Tada K, Aihara M, Sawada Y, Yokoyama M, Sato Y, Endo Y, Suzuki Z, Sato S, Sasaki H, Yokoyama S, Hayashi T, Uchida T, Hiwatashi K, Ishida N, Fujimaki M, Yamada K. Effects of glycyrrhizin (SNMC: Stronger Neo-Minophagen C) in hemophilia patients with HIV-1 infection. Tohoku J Exp Med 1990; 162: 183–193.Google Scholar
  23. 23.
    Ishikawa A, Kanamura R, Wakui A, Kanno S, Ohtsuki K. Characterization of glycyrrhizin-binding protein kinase from the crude membrane fraction of rat liver. Biochem Biophys Res Commun 1990; 167: 876–882.Google Scholar
  24. 24.
    Fujisawa K, Watanabe Y, Kawase H, Zeniya M, Kameda H. The efficacy of long term intermittent administration of glycyrrhizin in HBe antigen-positive chronic active hepatitis.In New Trends in Peptic Ulcer and Chronic Hepatitis — Part II Chronic Hepatatis Excerpta Medica, Tokyo, Japan, p. 127–132.Google Scholar
  25. 25.
    Suzuki H, Ohta Y, Takino T, Fujisawa K, Hirayama C. Effect of glycyrrhizin on biochemical tests in patients with chronic hepatitis - double blind trial. Asian Med J 1983; 26: 423–438.Google Scholar
  26. 26.
    Abe N, Ebina T, Ishida N. Interferon induction by glycyrrhizin and glycyrrhetinic acid in mice. Microbiol Immunol 1982; 26: 535–539.Google Scholar
  27. 27.
    Itoh K, Kumagai K. Augmentation of NK activity by several anti-inflammatory agents.In Natural killer activity and its regulation. Excerpta Medica, Int Congr Ser No. 641 p. 460–464.Google Scholar
  28. 28.
    Okuyama R, Abo T, Seki S, Ohteki T, Sugiura K, Kusumi A, Kumagai K. Estrogen administration activates extrathymic T cell differentiation in the liver. J Exp Med 1992; 175: 661–669.Google Scholar
  29. 29.
    Abo T. Extrathymic differentiation of T lymphocytes and its biological function. Biomed Res 1992; 13: 1–39.Google Scholar
  30. 30.
    Goosens PL, Jouin H, Marchal G, Milon G. Isolation and flow cytometric analysis of the free lymphomyeloid cells present in murine liver. J Immunol Methods 1990;132: 137–144.Google Scholar
  31. 31.
    Murosaki S, Yoshikai Y, Ishida A, Nakamura T, Matuszaki G, Takimoto H. Yuuki H. Nomoto K. Failure of T cell receptor Vβ negative selection in murine intestinal intraepithelial lymphocytes. Int Immunol 1991; 1005–1013.Google Scholar
  32. 32.
    Tamatani T, Miyasaka M. Identification of monoclonal antibodies reactive with the rat homolog of ICAM-1, and evidence for a differential involvement of ICAM-1 in the adherence of resting versus activated lymphocytes to high endothelial cells. Int Immunol 1990; 2: 165–171.Google Scholar
  33. 33.
    Mondelli M, Mieli Vergani G, Alberti A, Vergani D, Portmann B, Eddleston ALWF, Williams R. Specificity of T lymphocyte cytotoxicity to autologous hepatocytes in chronic hepatitis B virus infection: evidence that T cells are directed against HBV core antigen expressed on hepatocytes. J Immunol 1982; 129: 2773–2778.Google Scholar
  34. 34.
    Ferrari C, Penna A, Giuberti T, Tong MJ, Ribera E, Fiaccadori F, Chisari FV. Intrahepatic, nucleocapsid antigen-specific T cells in chronic active hepatitis B. J Immunol 1987; 139: 2050–2058.Google Scholar
  35. 35.
    Parronchi P, Macchia D, Piccini M, Biswas P, Simonelli C, Maggie E, Ricci M, Ansari AA, Romagnani S, Allergen- and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. Proc Natl Acad Sci USA 1991; 88: 4537–4542.Google Scholar
  36. 36.
    Yuuki M, Yoshikai Y, Koshihara K, Iwasaki A, Matsuzaki G, Takimoto H, Nomoto K. Clonal anergy in self-reactive α/β T cells is abrogated by heat-shock protein-reactive γ/δ T cells in aged athymic nude mice. Eur J Immunol 1990; 20: 1475–1482.Google Scholar
  37. 37.
    Seman M, Boudaly T, Roger T, Morisset J, Pham G. Autoreactive T cells in normal mice: unrestricted recognition of self peptides on dendritic cell I-A molecules by CD4CD8 T cell receptorα/β + T cell clones expressing V,β8.1 gene segments. Eur J Immunol 1990; 20: 1265–1272.Google Scholar
  38. 38.
    Matsumoto M, Yasukawa M, Inatsuki A, Kobayashi Y. Human double-negative (CD48) T cells bearing αβ T cell receptor possess both helper and cytotoxic activities. Clin Exp Immunol 1991; 85: 525–530.Google Scholar
  39. 39.
    Sydora BC, Kronenberg M. Characterization of CD4 positive T-cell line derived from an athymic (nu/nu) mouse. Cell Immunol 1991; 134: 54–64.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Motohiko Kimura
    • 1
  • Hisami Watanabe
    • 1
  • Toru Abo
    • 1
  1. 1.Department of ImmunologyNiigata University School of MedicineNiigataJapan

Personalised recommendations