Acta Mathematica Hungarica

, Volume 53, Issue 1–2, pp 119–127 | Cite as

The Kurosh-Ore exchange property

  • K. Reuter


Exchange Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Crawley, Decomposition theory for nonsemimodular lattices,Trans. Amer. Math. Soc.,99 (1961), 246–254.Google Scholar
  2. [2]
    P. Crawley, R. P. Dilworth,Algebraic theory of lattices, Prentice-Hall (1973).Google Scholar
  3. [3]
    P. H. Edelman, Meet-distributive lattices and the antiexchange closure,Alg. Universalis,10 (1980), 290–299.Google Scholar
  4. [4]
    P. H. Edelman, R. E. Jamison,The theory of convex geometries. Preliminary version of a survey article (1984).Google Scholar
  5. [5]
    U., Faigle, Geometries on partially ordered sets,Journal of combinatorial theory,28 (1980), 26–51.Google Scholar
  6. [6]
    G. Grätzer,General lattice theory, Birkhäuser Verlag (1978).Google Scholar
  7. [7]
    C. Hermann,S-verklebte Summen von Verbänden,Math. Z.,130 (1973), 255–274.Google Scholar
  8. [8]
    J. P. S. Kung, Matchings and Radon transforms in lattices. I. Consistent lattices,Order 2 (1985), 105–112.Google Scholar
  9. [9]
    J. P. S. Kung, Radon transforms in combinatorics and lattice theory. To appear in: I. Rival (ed.),Combinatorics and Ordered Sets, Contemporary Math., Amer. Math. Soc., Providence, Rhode Island (1985).Google Scholar
  10. [10]
    J. P. S. Kung, Private communication.Google Scholar
  11. [11]
    H. Mehrtens, Die Entstehung der Verbandstheorie. arbor scientiarum. Beiträge zur Wissenschaftsgeschichte, Reihe A Abhandlungen, Gerstenberg Verlag Hildesheim (1979).Google Scholar
  12. [12]
    K. Reuter, Matching for linearly indecomposable modular lattices,Discr. Math. 63 (1987), 245–247.Google Scholar
  13. [13]
    R. Wille, Complete tolerance relations of concept analysis. Contributions to general algebra 3. Proc. of the Vienna Conf. June 21–24, 1984, 397–415.Google Scholar
  14. [14]
    R. Wille, Subdirect decomposition of concept lattices,Alg. Universalis,17 (1983), 275–287.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • K. Reuter
    • 1
  1. 1.Technische Hochschule Darmstadt, FB4, AG1Darmstadt

Personalised recommendations