Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Krull dimension of the module category over right noetherian serial rings

  • 37 Accesses

Abstract

For a right Noetherian serial ring R that is not Artinian, it is proved that the Krull dimension of the category of finitely generated right R-modules is equal to one. Bibliography: 17titles.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Auslander, “Coherent functors,” in:Proceedings of the Conference on Categorical Algebra (La Jolla, 1965), Springer (1966), pp. 189–231.

  2. 2.

    W. Geigle, “Krall dimension and Artin algebras,”Led. Notes Math.,1177, 135–155 (1986).

  3. 3.

    M. Auslander, “Representation theory of Artin algebras, II,”Commun. Algebra,1, No. 4, 269–310 (1974).

  4. 4.

    W. Geigle, “The Krull-Gabriel dimension of the representation theory of a tame hereditary Artin algebra and applications to the structure of exact sequences,”Manuscr. Math.,54, No. 1/2, 83–106 (1985).

  5. 5.

    Yu. A. Drozd, “On generalized uniserial rings,”Mat. Zametki,18, No. 5, 705–710 (1975).

  6. 6.

    G. O. Michler, “Structure of semi-perfect hereditary noetherian rings,”J. Algebra,13, No. 3, 327–344 (1969).

  7. 7.

    V. V. Kirichenko, “Generalized uniserial rings,” Preprint IM-75-1, Inst. Math. Acad. Sci. Ukrainian SSR, Kiev (1975).

  8. 8.

    V. V. Kirichenko, “Generalized uniserial rings,”Mat. Sb.,99, No. 4, 559–581 (1976).

  9. 9.

    S. Singh, “Serial right Noetherian rings,”Can. J. Math.,36, No. 1, 22–37 (1984).

  10. 10.

    R. B. Warfield, “Serial rings and finitely presented modules,”J. Algebra,37, No. 2, 187–222 (1975).

  11. 11.

    P. Gabriel, “Auslander-Reiten sequences and representation-finite algebras,”Lect. Notes Math.,831, 1–71 (1980).

  12. 12.

    A. I. Generalov, “Inductively closed, proper classes over bounded HPN-rings,”Algebra Logika,25, No. 4, 384–404 (1986).

  13. 13.

    A. I. Generalov, “Proper classes of short exact sequences over Noetherian serial rings,” in:Rings and Modules. Limit Theorems of Probability Theory. I [in Russian], Leningrad (1986), pp. 87–102.

  14. 14.

    A. I. Generalov, “Grothendieck groups and short exact sequences over Noetherian rings,” in:Abelian Groups and Modules. 9 [in Russian], Tomsk (1990), pp. 7–30.

  15. 15.

    C. M. Ringel, “Tame algebras and integral quadratic forms,”Led. Notes Math., 1099 (1984).

  16. 16.

    P. Gabriel, “Des catégories abeliennes,”Bull. Soc. Math. France,90, No. 3, 323–448 (1962).

  17. 17.

    D. Eisenbud and J. C. Robson, “Hereditary Noetherian prime rings,”J. Algebra,16, No. 1, 86–104 (1970).

Download references

Additional information

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 236, 1997, pp. 73–86.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Generalov, A.I. The Krull dimension of the module category over right noetherian serial rings. J Math Sci 95, 2088–2095 (1999). https://doi.org/10.1007/BF02169964

Download citation

Keywords

  • Module Category
  • Serial Ring
  • Noetherian Serial Ring