Video fluorescein angiography: Method and clinical application

  • S. Wolf
  • F. Jung
  • H. Kiesewetter
  • N. Körber
  • M. Reim
Clinical Investigations

Abstract

Video fluorescein angiography, combined with a picture analyzing system, is a clinically applicable, objective method of evaluating the retinal blood-flow parameters. Optical density measurements were performed on videorecordings of fluorescence angiograms by means of a picture-analyzing system in order to determine the circulation parameters of the retina. These included: the arm-retina time (ART), the arteriovenous passage time (AVP), and the mean arterial dye-bolus velocity (MDV). Normal values for these parameters were derived from measurements in 75 healthy volunteers. The mean arm-retina time (ART) was 11.2 ± 3.3 s, the mean arteriovenous passage time (AVP) 1.45 ± 0.4 s and the mean arterial dye-bolus velocity (MDV) 6.39 ± 1.7 mm/s. No significant correlation could be shown between pulse or blood pressure and one of the retinal circulation parameters. A group of ten healthy volunteers was examined twice in order to obtain the intraindividual variation for the measuring parameters. The coefficient of variation for the ART was 18%, 10% for the AVP, and 26% for the MDV.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertram B, Wolf S, Elbers M, Joussen W, Jung F, Reim M (1988) Untersuchung retinaler Kreislaufzeiten bei Patienten mit insulinpflichtigem Diabetes mellitus Typ II. Fortschr Ophthalmol 85:413–415Google Scholar
  2. 2.
    Davson M (1962) The eye. Academic Press, New York LondonGoogle Scholar
  3. 3.
    Fahraeus R, Lindquist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96:562–568Google Scholar
  4. 4.
    Feman SS, Schaffer C, Heuven WAJ van (1976) Advances in TV fluorangiography. Doc Ophthalmol, The Hague, vol 9, pp 19–23Google Scholar
  5. 5.
    Gomez-Ulla F, Wolf S, Reim M (1987) Medicion del fluido sanguineo retiniano en la diabetes por memedio de un sistema de analisis de imagenes aplicado a la videoangiographia fluoresceinica. St Ophthalmol 3:13–18Google Scholar
  6. 6.
    Gotham JG, Gilroy J, Meyer JS (1962) Studies of cerebral circulation time in man. I. Normal values and alterations with cerebral vascular disease and tumours in arm-to-retina circulation times. J Neurol Neurosurg Psychiatry 25:292Google Scholar
  7. 7.
    Hamilton WF, Moore JW, Kinsman JW, Spurling RG (1932) Studies on the circulation, IV. Further analysis of the injection method and of changes in hemodynamics and physiological and pathological conditions. Am J Physiol 84:524–532Google Scholar
  8. 8.
    Heuven WAJ, Schaffer CA (1973) Advances in televised flourescein angiography. In: Fluorescein angiography. ISFA, Tokyo. Igaku Shoin, Tokyo, pp 10–14Google Scholar
  9. 9.
    Jung F, Kiesewetter H, Körber N, Wolf S, Reim M, Müller G (1983) Quantification of characteristic blood-flow parameters in the vessels of the retina with a picture analysis system for video-fluorescence angiograms: initial findings. Graefe's Arch Clin Exp Ophthalmol 211:133–136Google Scholar
  10. 10.
    Körber N, Gesch M, Kiesewetter H, Reim M, Schmid-Schonbein H (1980) Fernsehfluoreszenzangiographie der Retina. Neue technische Aspekte. Graefe's Arch Clin Exp Ophthalmol 213:65–70Google Scholar
  11. 11.
    Körber N, Gesch M, Reim M, Kiesewetter H, Schmid-Schönbein H (1981) Zur Untersuchung der Retinadurchblutung mittels Fernsehfluoreszenzangiographie. Ber Dtsch Ophthalmol Ges 78:573–575Google Scholar
  12. 12.
    Körber N, Jung F, Kieswetter H, Wolf S, Prünte C, Stolze H, Reim M (1985) Fernsehfluoreszenzangiographie und Bildanalyse; Klinische Anwendung mit Fallbeispiel. Klin Monatsbl Augenheilkd 186:117–120Google Scholar
  13. 13.
    Kohner EM (1976) The problems of retinal blood flow in diabetes. Diabetes 25:839–844Google Scholar
  14. 14.
    Kohner EM, Hamilton AM, Saunders SJ, Sutcliffe BA, Bulpitt CJ (1975) The retinal blood flow in diabetes. Diabetologia 11:27–33Google Scholar
  15. 15.
    Littmann H (1956) Die Zeiss-Funduskamera. Ber Dtsch Ophthalmol Ges 59:318–321Google Scholar
  16. 16.
    Littmann H (1982) Zur Bestimmung der wahren Größe eines Objekts auf dem Hintergrund des gesunden Auges. Klin Monatsbl Augenheilkd 180:286–289Google Scholar
  17. 17.
    Miszalok V (1987) Video-Angiographie: Methode und Nomenklatur. Klin Monatsbl Augenheilkd 190:217–218Google Scholar
  18. 18.
    Miszalok V, Wollensak J (1985) Die arterio-venöse Passage von Fluorescein in der Retina: Bildanalyse und Bewertung. Fortschr Ophthalmol 82:625–626Google Scholar
  19. 19.
    Niesel P (1978) Normale Fluoreszenzangiographie. Retinale und chorioidale Kreislaufzeit. 5. Kongreß der Europäischen Gesellschaft für Ophthalmologie, Hamburg, 1976. Enke, StuttgartGoogle Scholar
  20. 20.
    Niesel P (1980) Hämodynamik des uvealen und des retinalen Kreislaufs und die diagnostischen Möglichkeiten. Ophthalmologica 180:101–109Google Scholar
  21. 21.
    Novotny HR, Alvis DL (1960) A method for photographing fluorescence in circulating blood of the human eye. USAF Sch Aviat Med 60, 82:1–4Google Scholar
  22. 22.
    Oswald B, Visler W, Oswald H, Jütte A, Kö nigsdörffer E, Schweitzer D (1983) Messung von strömungsphysiologischen GroBen der Netzhautdurchblutung bei Normalpersonen. Graefe's Arch Clin Exp Ophthalmol 220:39–41Google Scholar
  23. 23.
    Preußner PR, Richard G, Darrelmann O, Weber J, Kreissig I (1983) Quantitative measurement of retinal blood flow in human beings by application of digital image-processing methods to television fluorescein angiograms. Graefe's Arch Clin Exp Ophthalmol 221:110–112Google Scholar
  24. 24.
    Reim M, Kiesewetter H, Korber N, Jung F, Raemaekers B, Wolf S (1987) Investigation by videofluorescence angiography of retinal blood circulation in central retinal vein occlusion. Acta XXV Concilium Ophthalmologicum. Proceedings of the XXVth International Congress of Ophthalmology, Rome, May 4–10, 1986, Kugler & Ghedini, Amsterdam, Berkeley Milano, pp 630–637Google Scholar
  25. 25.
    Richard GW (1985) Differentiation of retinal circulation times by videoangiography. Ophthalmologica 191:161–163Google Scholar
  26. 26.
    Richard G (1984) Die Anwendung der Videoangiographie der Retina. Klin Monatsbl Augenheilkd 185:119–122Google Scholar
  27. 27.
    Riva CE, Feke GT, Ben-Sira I (1978) Fluorescein dye-dilution technique and retinal circulation. Am J Physiol 234:15–322Google Scholar
  28. 28.
    Riva CR, Feke GT, Eberli B, Benary V (1979) Bidirectional LDV system for absolute measurement of blood speed in retinal vessels. Appl Opt 18:2301–2306Google Scholar
  29. 29.
    Riva CE, Sinclair SH, Grunwald JE (1981) Autoregulation of retinal circulation in response to decrease of perfusion. Invest Ophthalmol Vis Sci 21:34–38Google Scholar
  30. 30.
    Riva CE, Grunwald JE, Sinclair SH, Petrig BL (1985) Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 26:1124–1132Google Scholar
  31. 31.
    Robinson F, Riva ChE, Grunwald JE, Petrig BL, Sinclair STH (1986) Retinal blood flow autoregulation in response to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 27:722–726Google Scholar
  32. 32.
    Schulte AVM, Van Rens GH (1987) Retinal fluorotachometry (dynamic fluorescein angiography). In: BenEzra D, Ryan SJ, Glaser BM, Murphy RP (eds) Oscular circulation and neovascularisation. Nijhoff and Junk, Dordrecht, pp 11–22Google Scholar
  33. 33.
    Vilser W, Brandt HP, Königsdörffer E, Wittwer B, Jütte A, Dietze V (1979) Messungen zur Ermittlung des Blutvolumendurchflusses in großen retinalen Gefäßen des Menschen. Graefe's Arch Clin Exp Ophthalmol 212:41–47Google Scholar
  34. 34.
    Vyska K (1975) Theoretische Grundlagen zur Anwendung der Indikatordilutions-Kurven in der Radiokardiographie mit besonderer Berücksichtigung der Anwendung minimaler kardialer Transitzeiten in der klinischen Diagnostik. Habilitationsschrift. RWTH AachenGoogle Scholar
  35. 35.
    Wessing A (1974) Fluorescein-Fernseh-Angiographie der Netzhaut und der vorderen Augenabschnitte mit hochempfindlichen TV-Aufnahmeröhren. Klin Monatsbl Augenheilkd 165:817–822Google Scholar
  36. 36.
    Wolf S, Jung F, Körber N, Kiesewetter H, Reim M (1987) Measurement of retinal blood flow parameters by means of image analysis sytem for videofluorescence angiography. Acta XXV Concilium Ophthalmologicum. Proceedings of the XXVth Internationl Congress of Ophthalmology, Rome, May 4–10, 1986. Kugler & Ghedini, Amsterdam, Berkeley Milano, pp 204–208Google Scholar
  37. 37.
    Wolf S, Körber N, Reim M, Ringelstein EB (1987) Ocular blood supply in internal carotid obstructions. In: BenEzra D, Ryan SJ, Glaser BM, Murphy RP (eds) Ocular circulation and neovascularisation. Nijhoff and Junk, Dordrecht, pp 37–42Google Scholar
  38. 38.
    Wolf S, Körber N, Mielke B, Grümmer M, Kiesewetter H, Jung F, Reim M (1987) Videoangiographische Untersuchungen bei juvenilen Diabetikerns. Fortschr Ophthalmol 84:607–610Google Scholar
  39. 39.
    Wolf S, Bertram B, Jung F, Kiesewetter H, Teping C, Reim M (1988) Videofluoreszenzangiographische Verlaufsbeobachtung bei Patienten mit retinalem Stase-Syndrom. Klin Monatsbl Augenheilkd 193:39–43Google Scholar
  40. 40.
    Wolf S, Roßberg U, Teping C, Reim M (1988) Videoangiographische Untersuchungen bei Patienten mit arterieller Hypertonie. Fortschr Ophthalmol 85: 580–582Google Scholar
  41. 41.
    Wolf S, Hoberg A, Bertram B, Kiesewetter H, Reim M (1988) Video fluorescein angiography in central retinal artery occlusion. Klin Monatsbl Augenheilkd (in press)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • S. Wolf
    • 1
  • F. Jung
    • 2
  • H. Kiesewetter
    • 2
  • N. Körber
    • 1
  • M. Reim
    • 1
  1. 1.Augenklinik der Rheinisch-Westfälischen Technischen HochschuleAachenFederal Republic of Germany
  2. 2.Abteilung für klinische Hämostaseologie und TransfusionsmedizinUniversität des SaarlandesHomburgFederal Republic of Germany

Personalised recommendations