Journal of Mathematical Sciences

, Volume 96, Issue 2, pp 3042–3046 | Cite as

A variational-recursive method of generalized separation of variables for solving multidimensional integral equations

  • M. M. Voitovich
  • S. A. Yaroshko


We describe a recursive method of solving multidimensional integral equations. An approximate separation of variables holds at each step from the condition for minimizing a suitable functional. The original problem is reduced to a sequence of one-dimensional problems. Several versions of the algorithm are given.


Integral Equation Original Problem Recursive Method Generalize Separation Approximate Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. L. Agranovskii and R. D. Baglai, “On an expansion in Hilbert space and its applications,”Zh. Vychisl. Mat. Mat. Fiz.,17, No. 4, 871–878 (1977).Google Scholar
  2. 2.
    D. E. Allakhverdiev, “On the rate of approximation of completely continuous operators by finite-dimensional operators,”Uch. Zap. Azerb. Univ., No. 2, 27–35 (1957).Google Scholar
  3. 3.
    R. D. Baglai and K. K. Smirnov, “On the processing of two-dimensional signals on a computer,”Zh. Vychisl. Mat. Mat. Fiz.,15, No. 1, 241–248 (1975).Google Scholar
  4. 4.
    Yu. G. Balyash and N. N. Voitovich, “An approximate variational-recursive separation of variables in multidimensional problems,” in:Waves and Diffraction — 85: The Ninth All-Union Symposium on Diffraction and Wave Propagation, Vol. 1, Tbilisi University Press (1985), p. 122.Google Scholar
  5. 5.
    Yu. G. Balyash and N. N. Voitovich, “A variational-recursive method of solving multidimensional integral equations,” in:Integral Equations in Applied Simulation: Proceedings of the 20th Republic Conference, Pt. 2, Electrodynamics Institute of the Ukrainian SSR Academy of Sciences, Kiev (1986), p. 23.Google Scholar
  6. 6.
    Ya. I. Burak and Yu. D. Zozulyak, “A generalized variational approach in heat-conduction problems of thin shells,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 3, 28–31 (1987).Google Scholar
  7. 7.
    A. A. Vainshtein, “The method of approximate separation of variables and its applications to boundary-value problems of electrodynamics and acoustics,”Zh. Tekhn. Fiz.,26, No. 2, 385–389 (1956).Google Scholar
  8. 8.
    A. F. Verlan' and I. A. Serikova, “On the question of the convergence of a variational-recursive method of approximating a function of two variables,”Tochn. Nadezhn. Kibern. Sist., No. 3, 10–12 (1975).Google Scholar
  9. 9.
    A. F. Verlan' and V. S. Sizikov,Integral Equations: Methods, Algorithms, Programs [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  10. 10.
    N. L. Veselago, “Approximation of functions of two variables by a special form of superposition of functions of one variable,”Izv. Leningr. Elektrotekh. Inst., No. 39, 38–46 (1959).Google Scholar
  11. 11.
    N. N. Voitovich, “Synthesis of a two-dimensional antenna grid with generalized separation of variables,”Radiotekh. Elektron.,33, No. 12, 2637–2640 (1988).Google Scholar
  12. 12.
    N. N. Voitovich and S. A. Yaroshko, “Numerical solution of the problem of synthesis of a two-dimensional antenna grid,”Radiotekhn. Elektron.,36, No. 1, 192–196 (1991).Google Scholar
  13. 13.
    A. M. Goncharenko, A. B. Sotskii, and L. I. Sotskaya, “The self-consistent field method in the theory of anisotropic strip dielectric waveguides,”Dokl. Akad. Nauk Belar. SSR,29, No. 1, 34–37 (1985).Google Scholar
  14. 14.
    A. P. Grishin, “An extremal problem of representing a table-defined function of two variables by functions of one variable,”Zh. Vychisl. Mat. Mat. Fiz.,17. No. 4, 838–846 (1977).Google Scholar
  15. 15.
    Yu. D. Zozulyak, “A generalized variational approach in problems of dynamic thermoelasticity of thin shells,”Dop. Akad. Nauk Ukr. RSR, Ser. A, No. 6, 23–25 (1987).Google Scholar
  16. 16.
    P. I. Kalenyuk, Ya. E. Baranetskii, and Z. N. Nitrebich,The Generalized Method of Separation of Variables [in Russian], Naukova Dumka, Kiev (1993).Google Scholar
  17. 17.
    V. V. Pospelov, “On the approximation of functions of several variables by products of functions of one variable,” Preprint, Institute for Applied Mathematics of the USSR Academy of Sciences, No. 32 (1978).Google Scholar
  18. 18.
    Yu. G. Balyash, M. M. Voitovich, and S. A. Yaroshko, “Generalized separation of variables in problems of diffraction and antenna synthesis,” in:The 1989 URSI International Symposium on Electromagnetic Theory, Stockholm (1989), pp. 650–652.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • M. M. Voitovich
  • S. A. Yaroshko

There are no affiliations available

Personalised recommendations