Journal of comparative physiology

, Volume 108, Issue 2, pp 171–192

Left hypoglossal dominance in the control of canary and white-crowned sparrow song

  • Fernando Nottebohm
  • Marta E. Nottebohm


The syrinx of songbirds includes two separate sound sources, the internal tympaniform membranes (ITM), which form the medial wall of each bronchus. The performance of each ITM is controlled by the muscles of that syringeal half. In the canarySerinus canarius, hypoglossal fibers reaching the syrinx via the tracheosyringealis branch of the hypoglossus are responsible for sound modulation. The muscles controlling the performance of the left syringeal half are innervated solely by the left tracheosyringealis; those controlling the right syringeal half are innervated only by the right tracheosyringealis. In the canary and white-crowned sparrow (Zonotrichia leucophrys) a great majority of song elements disappears after section of the left tracheosyringealis, yet remains intact after section of the right one. This phenomenon, earlier described in the chaffinch (Nottebohm, 1970, 1971, 1972) and confirmed in the white-throated sparrow (Lemon, 1973), has been called left hypoglossal dominance. Left hypoglossal dominance occurs in canaries with small or large song repertoires. It occurs in chronically deafened canaries that never had access to their own auditory feedback; it also occurs in birds that had the right or left cochlea removed at an early age. To this extent, left hypoglossal dominance seems to emerge in the individual as a motor phenomenon.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borror, D.J., Reese, C.R.: Vocal gymnastics in wood thrush songs. Ohio J. Sci.56, 177–182 (1956)Google Scholar
  2. Chamberlain, D.R., Gross, W.B., Cornwell, G.W., Mosby, H.S.: Syringeal anatomy in the common crow. Auk85, 244–252 (1968)Google Scholar
  3. Conrad, R.: Untersuchungen über den unteren Kehlkopf der Vögel. I. Zur Kenntnis der Innervierung. Z. wiss. Zool.114, 532–576 (1915)Google Scholar
  4. Dürrwang, R.: Funktionelle Biologie, Anatomie und Physiologie der Vogelstimme. Doctoral Dissertation, Univ. Basel 1974Google Scholar
  5. Gaunt, A.S., Wells, M.K.: Models of syringeal mechanisms. Amer. Zool.13, 1227–1247 (1973)Google Scholar
  6. Greenewalt, C.H.: Bird song, acoustics and physiology. Washington, D.C.: Smithsonian Institution Press 1968Google Scholar
  7. Hersch, G.L.: Bird voices and resonant tuning in helium-air mixtures. Doctoral Dissertation, Univ. of Calif, Berkeley 1966Google Scholar
  8. Hopkins, C.D., Rosetto, M., Lutjen, A.: A continuous sound spectrum analyzer for animal sounds. Z. Tierpsychol.34, 313–320 (1974)Google Scholar
  9. Kimura, D.: Some effects of temporal-lobe damage on auditory perception. Canad. J. Psychol.15, 156–165 (1961a)Google Scholar
  10. Kimura, D.: Cerebral dominance and the perception of verbal stimuli. Canad. J. Psychol.15, 166–171 (1961b)Google Scholar
  11. Kimura, D.: Functional asymmetry of the brain in dichotic listening. Cortex3, 163–178 (1967)Google Scholar
  12. Klatt, D.H., Stefanski, R.A.: How does a mynah bird imitate human speech? J. acoust. Soc. Amer.55, 822–832 (1974)Google Scholar
  13. Konishi, M.: Effects of deafening on song development in two species of juncos. Condor66, 85–102 (1964)Google Scholar
  14. Konishi, M.: The role of auditory feedback in the control of vocalizations in the White-crowned sparrow. Z. Tierpsychol.22, 770–783 (1965)Google Scholar
  15. Lemon, R.E.: Nervous control of the syrinx in white-throated sparrows (Zonotrichia albicollis). J. Zool. (Lond.)171, 131–140 (1973)Google Scholar
  16. Marler, P.: A comparative approach to vocal learning: song development in white-crowned sparrows. J. comp. physiol. Psychol.71, Monogr., 25 (1970)Google Scholar
  17. Marler, P., Konishi, M., Lutjen, A., Waser, M.S.: Effects of continuous noise on avian hearing and vocal development. Proc. nat. Acad. Sci. (Wash.)70, 1393–1396 (1973)Google Scholar
  18. Marler, P., Tamura, M.: Song dialects in three populations of white-crowned sparrows. Condor64, 368–377 (1962)Google Scholar
  19. Marler, P., Tamura, M.: Culturally transmitted patterns of vocal behavior in sparrows. Science146, 1483–1486 (1964)Google Scholar
  20. Metfessel, M.: Roller canary song produced without learning from external source. Science81, 470 (1935)Google Scholar
  21. Miskimen, M.: Sound production in passerine birds. Auk68, 493–504 (1951)Google Scholar
  22. Molfese, D.L., Freeman, R.B., Palermo, D.S.: The ontogeny of brain lateralization for speech and nonspeech stimuli. Brain and Language2, 356–368 (1975)Google Scholar
  23. Nottebohm, F.: Auditory experience and song development in the chaffinch,Fringilla coelebs. Ibis110, 549–568 (1968)Google Scholar
  24. Nottebohm, F.: Ontogeny of bird song. Science167, 950–956 (1970)Google Scholar
  25. Nottebohm, F.: Neural lateralization of vocal control in a passerine bird. I. Song. J. exp. Zool.177, 229–262 (1971)Google Scholar
  26. Nottebohm, F.: Neural lateralization of vocal control in a passerine bird. II. Subsong, calls, and a theory of vocal learning. J. exp. Zool.179, 35–50 (1972)Google Scholar
  27. Nottebohm, F.: Vocal behavior in birds. In: Avian biology (eds. D.S. Farner, J.R. King) New York: Academic Press 1975Google Scholar
  28. Nottebohm, F., Stokes, T.M., Leonard, C.M.: Central control of song in the canary,Serinus canarius. J. comp. Neurol.165, 457–486 (1976)Google Scholar
  29. Poulsen, H.: Inheritance and learning in the song of the chaffinch (Fringilla coelebs). Behaviour3, 216–228 (1951)Google Scholar
  30. Poulsen, H.: Song learning in the domestic canary. Z. Tierpsychol.16, 173–178 (1959)Google Scholar
  31. Rosenzweig, M.R.: Representations of the two ears at the auditory cortex. Amer. J. Physiol.167, 147–158 (1951)Google Scholar
  32. Thorpe, W.H.: The learning of song patterns by birds, with special reference to the song of the chaffinch,Fringilla coelebs. Ibis100, 535–570 (1958)Google Scholar
  33. Tunturi, A.R.: A study on the pathway from the medial geniculate body to the acoustic cortex in the dog. Amer. J. Physiol.147, 311–319 (1946)Google Scholar
  34. Youngren, O.M., Peek, F.W., Phillips, R.E.: Repetitive vocalizations evoked by local electrical stimulation of avian brains. Brain, Behav. Evol.9, 393–421 (1974)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Fernando Nottebohm
    • 1
  • Marta E. Nottebohm
    • 1
  1. 1.Field Research CenterThe Rockefeller UniversityMillbrookUSA

Personalised recommendations