Journal of Abnormal Child Psychology

, Volume 22, Issue 5, pp 561–578

Methylphenidate influences on both early and late ERP waves of ADHD children in a continuous performance test

  • M. N. Verbaten
  • C. C. E. Overtoom
  • H. S. Koelega
  • H. Swaab-Barneveld
  • R. J. van der Gaag
  • J. Buitelaar
  • H. van Engeland


Although it has frequently been reported that hyperactive children have abnormally small P3 amplitudes of the event-related potential (ERP), which are normalized by the stimulant drug methylphenidate (MPH), the literature is inconsistent concerning earlier ERP waves. The aim of the present study was to investigate whether the normalizing effect of a 10-mg dose of MPH was also apparent on earlier waves, such as the N1, the P2, and the N2, besides the P3. Twelve attention deficit with hyperactivity disorder (ADHD) children performed a Continuous Performance Test involving a button-press response to the letter X (CPT-X) under the influence of MPH in a double-blind placebo controlled acute dosage design. ERPs were recorded at Oz, Pz, Cz, and Fz. The expected increase of the parietal P3, both to targets and nontargets, was apparent, as well as a significant increase in percentage of hits. There also was a significant increase of an earlier, negative going, wave, the N2, with a frontal maximum, under the influence of MPH. This wave was probably a manifestation of an increase in processing negativity for target stimuli only, after the intake of the stimulant drug. No effect of MPH was found on the N1 or the P2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, T. M., & Edelbrock, C. S. (1983).Manual for the Child Behavior Checklist and Revised Child Behavior Profile. Queen City: Queen City Printer Inc.Google Scholar
  2. American Psychiatric Association (1987).Diagnostic and statistical manual of mental disorders (3rd ed., rev.). Washington DC: Author.Google Scholar
  3. Connors, C. K. (1985). Teacher questionnaire.Psychopharmacology Bulletin, 21, 823–828.Google Scholar
  4. Coons, H. W., Klorman, R., & Borgstedt, A. D. (1987). Effects of methylphenidate on adolescents with a childhood history of attention deficit disorder: II. Information processing.Journal of the American Academy of Child and Adolescent Psychiatry, 26, 368–374.Google Scholar
  5. Coons, H. W., Peloquin, L. J., Klorman, R., Ryan, R. M., Bauer, L. O., Perlmutter, R. A., & Salzman, L. F. (1981). Effects of methylphenidate on young adults event-related potentials.Electroencephalography and Clinical Neurophysiology, 51, 373–387.Google Scholar
  6. Courchesne, E., Hillyard, S. A., & Galambos, R. (1975). Stimulus novelty, task relevance and the visual evoked potential in man.Electroencephalography and Clinical Neurophysiology, 39, 131–143.Google Scholar
  7. Duncan, C. C., & Kaye, W. H. (1986). Effects of an alpha-2 adrenergic agonist on information processing: An electrophysiological analysis. In J. W. Rohrbaugh, R. Johnson, & R. Parasuraman (Eds.),8th international conference on event-related potentials of the brain (EPIC VIII). Stanford, CA: Research Reports.Google Scholar
  8. Duncan-Johnson, C. C., & Donchin, E. (1977). On quantifying surprise: The variation of event-related potentials with subjective probability.Psychophysiology, 14, 456–467.Google Scholar
  9. Dykman, R. A., Holcomb, P. J., Ackerman, P. T., & McCray, D. S. (1983). Auditory ERP augmentation-reduction and methylphenidate dosage needs in attention and reading disordered children.Psychiatry Research, 9, 225–269.Google Scholar
  10. Edwards, A. L. (1967).Statistical methods. New York: Holt, Rinehart and Winston.Google Scholar
  11. Finn, J. D. (1978).Multivariance, version VI, release 2, Fortran IV program. Chicago: National Educational Resources.Google Scholar
  12. Garfinkel, B. D., Brown, W. A., Klee, S. H., Braden, W., Beauchesne, H., & Shapiro, S. K. (1986). Neuroendocrine and cognitive responses to amphetamine in adolescents with a history of attention deficit disorder.Journal of the American Academy of Child Psychiatry, 25, 503–508.Google Scholar
  13. Hall, R. A., Griffin, R. B., Meyer, D. L., Hopkins, K. H., & Rappaport, M. (1976). Evoked potential, stimulus intensity and drug treatment in hyperkinesis.Psychophysiology, 13, 405–415.Google Scholar
  14. Halliday, R., Rosenthal, J. H., Naylor, H., & Callaway, E. (1976). Averaged evoked potential predictors of clinical improvement in hyperactive children treated with methylphenidate: An initial study and a replication.Psychophysiology, 13, 429–440.Google Scholar
  15. Halliday, R., Rosenthal, J. H., Naylor, H., & Callaway, E. (1983). Averaged evoked potential predictors of clinical improvement in hyperactive children: Dose/response effects.Electroencephalography and Clinical Neurophysiology, 55, 258–267.Google Scholar
  16. Harter, M. R., & Guido, W. (1980). Attention to pattern orientation: Negative cortical potentials, reaction time, and the selection process.Electroencephalography and Clinical Neurophysiology, 49, 461–475.Google Scholar
  17. Hillyard, S. A., & Hansen, J. C. (1986). Attention: Electrophysiological approaches. In M. G. H. Coles, E. Donchin, & J. W. Porges (Eds.),Psychophysiology: Systems, processes, and applications (pp. 227–243). New York: Guilford Press.Google Scholar
  18. Kenemans, J. L., Verbaten, M. N., Melis, C. M., & Slangen, J. L. (1992). Visual stimulus change and the OR: Event-related potential for a two-stage process.Biological Psychology, 33, 97–114.Google Scholar
  19. Kenemans, J. L., Verbaten, M. N., Roelofs, J. W., & Slangen, J. L. (1989). Initial and change ORs: An analysis based on visual single-trial event-related potentials.Biological Psychology, 28, 199–226.Google Scholar
  20. Klorman, R., Brumaghin, J. T., Salzman, L. F., Strauss, J., Borgstedt, A. D., McBride, M. C., & Loeb, S. (1990). Effects of methylphenidate on processing negativities in patients with attention deficit hyperactivity disorder.Psychophysiology, 27, 328–337.Google Scholar
  21. Klorman, R., Salzman, L. F., Bauer, L. O., Coons, H. W., Borgstedt, A. D., & Halpern, W. I. (1983). Effect of two doses of methylphenidate on cross-situational and borderline hyperactives' children's evoked potentials.Electroencephalography and Clinical Neuro-physiology, 56, 169–185.Google Scholar
  22. Klorman, R., Salzman, L. F., & Borgstedt, A. D. (1988). Brain event-related potentials in evaluation of cognitive deficits in attention deficit disorder and outcome of stimulant therapy. In L. M. Bloomingdale (Ed.),Attention deficit disorder (pp. 49–79). Oxford/New York: Pergamon Press.Google Scholar
  23. Klorman, R., Salzman, L. F., Pass, H. L., Borgstedt, A. D., & Dainer, K. B. (1979). Effects of methylphenidate on hyperactive children's evoked responses during passive and active attention.Psychophysiology, 16, 23–29.Google Scholar
  24. Koelega, H. S., Verbaten, M. N., Leeuwen, T. H. van, Kenemans, J. L., Kemner, C., and Sjouw, W. (1992). Time effects on event-related potentials and vigilance performance.Biological Psychology, 343, 59–86.Google Scholar
  25. Leeuwen, T. H. van, Verbaten, M. N., Koelega, H. S., Kenemans, J. L., & Slangen, J. L. (1992). The effects of bromazepam on single-trial event related potentials in a visual vigilance task.Psychopharmacology, 106, 555–564.Google Scholar
  26. Loiselle, D. L., Stamm, J. S., Maitinsky, S., & Whipple, S. C. (1980). Evoked potentials and behavioral signs of attentive dysfunctions in hyperactive boys.Psychophysiology, 17, 193–201.Google Scholar
  27. McIntyre, H. B., Firemark, H. M., Cho, A. K., Bodner, L., & Gomez, M. (1981). Computer analyzed EEG in amphetamine-responsive hyperactive children.Psychiatry Research, 4, 189–197.Google Scholar
  28. McNemar, Q. (1955).Psychological statistics (2nd ed.). New-York: Wiley.Google Scholar
  29. Michael, R. L., Klorman, R., Salzman, L. F., Borgstedt, A. D., & Dainer, K. B. (1981). Normalizing effects of methylphenidate on hyperactives' children's vigilance performance and evoked potentials.Psychophysiology, 18, 665–677.Google Scholar
  30. Näätänen, R., & Gaillard, A. W. K. (1983). The orienting reflex and the N2 deflection of the event-related potential (ERP). In A. W. K. Gaillard & W. Ritter (Eds.),Tutorials in event-related potential research: Endogenous components (pp. 119–141). Amsterdam: North-Holland.Google Scholar
  31. Näätänen, R., & Michie, P. T. (1979). Early selective-attention effects on the evoked potential: A critical review and interpretation.Biological Psychology, 8, 81–136.Google Scholar
  32. Nyman, G., Alho, K., Laurinen, P., Paavilainen, P., Radil, T., Reinikainen, K., Sams, M., & Näätänen, R. (1990). Mismatch negativity (MMN) for sequences of auditory and visual stimuli: Evidence for a mechanism specific to the auditory modality.Electroencephalography and Clinical Neurophysiology, 77, 436–444.Google Scholar
  33. Parasuraman, R., & Beatty, J. (1980). Brain events underlying detection and recognition of weak sensory signals.Science 210, 80–83.Google Scholar
  34. Pineda, J. A., Swick, D., & Foote, S. L. (1991). Noradrenergic and cholinergic influences on the genesis of P3-like potentials. In C. H. M. Brunia, G. Mulder, & M. N. Verbaten (Eds.),Event-related brain research. Electroencephalography and Clinical Neurophysiology (Suppl. 42), 165–172.Google Scholar
  35. Prichep, L. S., Sutton, S., & Hakerem, G. (1976). Evoked potentials in hyperkinetic and normal children under certainty and uncertainty: A placebo and methylphenidate study.Psychophysiology, 13, 419–428.Google Scholar
  36. Rapport, M. D., Jones, J. T., DuPaul, G. J., Kelly, K. L., Gardner, M. J., Tucker, S. B., & Shea, M. S. (1987). Attention deficit disorder and methylphenidate: Group and single-subject analyses of dose effects on attention in clinical and classroom settings.Journal of Clinical Child Psychology, 16, 329–338.Google Scholar
  37. Rapport, M. D., & Kelly, K. L. (1991). Psychostimulant effects on learning and cognitive function: Findings and implications for children with attention deficit hyperactivity disorder.Clinical Psychology Review, 11, 61–92.Google Scholar
  38. Satterfield, J. H., Schell, A. M., Nicholas, T., & Backs, R. W. (1988). Topographic study of auditory event-related potentials in normal boys and boys with attention deficit disorder with hyperactivity.Psychophysiology, 25, 591–606.Google Scholar
  39. Strauss, J., Lewis, J. L., Klorman, R., Peloquin, L. J., Perlmutter, R. A., & Saltzman, L. F. (1984). Effect of methylphenidate on young adults' performance and event-related potentials in a vigilance and a paired-associates learning test.Psychophysiology, 21, 609–621.Google Scholar
  40. Sutton, S., Braren, M., & Zubin, J. (1965). Evoked potential correlates of stimulus uncertainty.Science, 150, 1187–1188.Google Scholar
  41. Swanson, J. H., Sandman, C. A., Deutsch, C., & Baren, M. (1983). Methylphenidate hydrochloride given with or before breakfast: I. Behavioral, cognitive, and electrophysio-logic effects.Pediatrics, 72, 49–55.Google Scholar
  42. Wijers, A. A., Mulder, G., Okita, T., Mulder, L. J. M., & Scheffers, M. K. (1989). Attention to color: An analysis of selection, controlled search and motor activation, using event-related potentials.Psychophysiology, 26, 89–109.Google Scholar
  43. Winer, B. J. (1971).Statistical principles in experimental design (pp. 220–228). Tokyo: McGraw-Hill.Google Scholar
  44. Woestenburg, J. C., Verbaten, M. N., & Slangen, J. L. (1983). The removal of eye-movement artefact from the EEG by regression analysis in the frequency domain.Biological Psychology, 16, 217–247.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • M. N. Verbaten
    • 1
  • C. C. E. Overtoom
    • 1
  • H. S. Koelega
    • 1
  • H. Swaab-Barneveld
    • 2
  • R. J. van der Gaag
    • 2
  • J. Buitelaar
    • 2
  • H. van Engeland
    • 2
  1. 1.Faculty of Pharmacy, Section PsychopharmacologyUniversity of UtrechtCA UtrechtThe Netherlands
  2. 2.Department of Child PsychiatryUtrecht UniversityThe Netherlands

Personalised recommendations