Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Numerical methods of high-order accuracy for nonlinear boundary value problems

II. Nonlinear boundary conditions

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Browder, F. E.: Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Proc. of Symp. in Applied Math. Vol. XVII, Applications of Nonlinear Partial Differential Equations in Mathematical Physics, American Mathematical Society, 24–29 (1965).

  2. 2.

    Ciarlet, P. G.: Variational methods for non-linear boundary-value problems (103 pp.). Doctoral Thesis, Case Institute of Technology 1966.

  3. 3.

    M. H. Schultz, andR. S. Varga: Numerical methods of high-order accuracy for nonlinear two-point boundary value problems. Proceedings of the International Colloquium C. N. R. S., Besangon, France, Sept. 7–14, 1966 (to appear).

  4. 4.

    — Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem. Numer. Math.9, 394–430 (1967).

  5. 5.

    — Numerical methods of high-order accuracy for nonlinear boundary value problems. Monotone operators (to appear).

  6. 6.

    Collatz, L.: The numerical treatment of differential equations, 3rd. ed. (568 pp.). Berlin-Göttingen-Heidelberg: Springer 1960.

  7. 7.

    Courant, R., andD. Hilbert: Methods of mathematical physics. Vol. 1 (561 pp.). New York: Interscience 1953.

  8. 8.

    Herbold, R. J.: Consistent quadrature schemes for the numerical solution of boundary value problems by variational techniques (189 pp.). Doctoral Thesis, Case Institute of Technology 1968.

  9. 9.

    Keller, H. B.: Existence theory for two-point boundary problems. Bull. Amer. Math. Soc.72, 728–731 (1966).

  10. 10.

    Kellogg, R. B.: Personal communication.

  11. 11.

    Lorentz, G. G.: Approximation of functions (188 pp.). New York: Holt, Rinehart, and Winston 1966.

  12. 12.

    Mikhlin, S. G.: Variational methods in mathematical physics (582 pp.). New York: Macmillan Co. 1964.

  13. 13.

    Schechter, S.: Iteration methods for nonlinear problems. Trans. Amer. Math. Soc.104, 179–189 (1962).

  14. 14.

    Schultz, M. H., andR. S. Varga:L-splines. Numer. Math.10, 345–369 (1967).

  15. 15.

    Yosida, K.: Functional analysis (458 pp.). New York: Academic Press 1965.

Download references

Author information

Additional information

This research was supported in part by NSF Grant GP-5553.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ciarlet, P.G., Schultz, M.H. & Varga, R.S. Numerical methods of high-order accuracy for nonlinear boundary value problems. Numer. Math. 11, 331–345 (1968). https://doi.org/10.1007/BF02166686

Download citation

Keywords

  • Mathematical Method
  • Nonlinear Boundary