Numerische Mathematik

, Volume 11, Issue 2, pp 99–110

Reduction of the symmetric eigenproblemAx=λBx and related problems to standard form

  • R. S. Martin
  • J. H. Wilkinson
Handbook Series Linear Algebra

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth, W., R. S. Martin, andJ. H. Wilkinson: Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Numerische Mathematik9, 386–393 (1967).Google Scholar
  2. 2.
    Bowdler, Hilary,C., Reinsch, andJ. H. Wilkinson: TheQL algorithm for symmetric tridiagonal matrices. To appear in this series.Google Scholar
  3. 3.
    Martin, R. S., C. Reinsch, andJ. H. Wilkinson: Householder's tridiagonalization of a real symmetric matrix. To appear in this series.Google Scholar
  4. 4.
    ——,G. Peters, andJ. H. Wilkinson: Symmetric decomposition of a positive definite matrix. Numerische Mathematik7, 362–383 (1965).Google Scholar
  5. 5.
    Rutischauser, H.: The Jacobi method for real symmetric matrices. Numerische Mathematik9, 1–10 (1966).Google Scholar
  6. 6.
    Wilkinson, J. H.: Calculation of the eigenvectors of a symmetric tridiagonal matrix by inverse iteration. Numerische Mathematik4, 368–376 (1962). (Improved version to appear in this series.)Google Scholar
  7. 7.
    —— The algebraic eigenvalue problem. London: Oxford University Press 1965.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • R. S. Martin
    • 1
  • J. H. Wilkinson
    • 1
  1. 1.National Physical LaboratoryTeddington, MiddlesexEngland

Personalised recommendations