Numerische Mathematik

, Volume 15, Issue 4, pp 283–296 | Cite as

Interpolation polynomials on the triangle

  • Alexander Ženíšek


Mathematical Method Interpolation Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlin, A. C.: A bivariate generalization of Hermite's interpolation formula. Math. Comp.18, 264–273 (1964).Google Scholar
  2. 2.
    Berezin, I. S., Židkov, N. P.: Computing methods, vol. 1. English translation. Oxford: Pergamon Press 1965.Google Scholar
  3. 3.
    Birkhoff, G., Schultz, M. H., Varga, R. S.: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math.11, 232–256 (1968).Google Scholar
  4. 4.
    Smirnov, V. I.: A course in higher mathematics, vol. V. English translation. Oxford: Pergamon Press 1964.Google Scholar
  5. 5.
    Synge, J. L.: The hypercircle in mathematical physics, pp. 209–213. London: Cambridge Univ. Press 1957.Google Scholar
  6. 6.
    Zlámal, M.: On the finite element method. Numer. Math.12, 394–409 (1968).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Alexander Ženíšek
    • 1
  1. 1.Technical UniversityBrnoCzechoslovakia

Personalised recommendations