Numerische Mathematik

, Volume 13, Issue 5, pp 448–457

Conformal mapping of doubly-connected domains

  • George T. Symm
Article

Abstract

This paper describes an integral equation method for computing the conformal mapping of a finite doubly-connected domain ontoR <|w|<1, whereR is uniquely determined. The method is illustrated by numerical examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaier, D.: Konstruktive Methoden der konformen Abbildung. Springer Tracts in Natural Philosophy, Vol. 3. Berlin-Göttingen-Heidelberg-New York: Springer 1964.Google Scholar
  2. 2.
    Garrick, I. E.: Potential flow about arbitrary biplane wing sections. NACA Report 542, 1936.Google Scholar
  3. 3.
    Jaswon, M. A.: Integral equation methods in potential theory. I. Proc. Roy. Soc. A275, 23–32 (1963).Google Scholar
  4. 4.
    Kantorovich, L. V., Krylov, V. I.: Approximate methods of higher analysis. Groningen: Noordhoff 1964.Google Scholar
  5. 5.
    Laura, P. A.: Conformal mapping of a class of doubly connected regions. NASA Tech. Rep. No. 8, The Catholic University of America, Washington, 1965Google Scholar
  6. 6.
    Lewis, G. K.: Flow and load parameters of hydrostatic oil bearings for several port shapes. J. Mech. Eng. Sci.8, 173–184 (1966).Google Scholar
  7. 7.
    Mikhlin, S. G.: Integral equations. London: Pergamon 1957.Google Scholar
  8. 8.
    Muskhelishvili, N. I.: Some basic problems of the mathematical theory of elasticity. Groningen: Noordhoff 1953.Google Scholar
  9. 9.
    Opfer, G.: Untere, beliebig verbesserbare Schranken für den Modul eines zweifach zusammenhängenden Gebietes mit Hilfe von Differenzenverfahren. Dissertation, Hamburg, 1967.Google Scholar
  10. 10.
    Royden, H. L.: A modification of the Neumann-Poincaré method for multiply connected regions. Pacific J. Maths.2, 385–394 (1952).Google Scholar
  11. 11.
    Savin, G. N.: Stress concentration around holes. London: Pergamon 1961.Google Scholar
  12. 12.
    Sugiyama, H., Joh, K.: A numerical procedure of conformal mapping in case of simply, doubly and multiply connected domains from the viewpoint of Monte Carlo approach (I). Tech. Rep. Osaka Univ.12, No. 488 (1962).Google Scholar
  13. 13.
    Symm, G. T.: An integral equation method in conformal mapping. Num. Math.9, 250–258 (1966).Google Scholar
  14. 14.
    —— Numerical mapping of exterior domains. Num. Math.10, 437–445 (1967)Google Scholar
  15. 15.
    Ugodčikov, A. G.: Electromodelling of the conformal mapping of a circular cylinder onto a given doubly connected region. Ukrain. Mat. Ž.7, 305–312 (1955)Google Scholar
  16. 16.
    Wilson, H. B.: A method of conformal mapping and the determination of stresses in solid propellant rocket grains. Report No. S-38, Rohm and Haas Co., Alabama, 1963Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • George T. Symm
    • 1
  1. 1.Division of Numerical and Applied MathematicsNational Physical LaboratoryTeddingtonG. B.

Personalised recommendations