Advertisement

Numerische Mathematik

, Volume 13, Issue 5, pp 404–424 | Cite as

Numerical solution of linear equations with Toeplitz and Vector Toeplitz matrices

  • Erwin H. Bareiss
Article

Keywords

Linear Equation Mathematical Method Toeplitz Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wiener, N.: Extrapolation, interpolation, and smoothing of stationary time series. Appendix B by Norman Levinson, p. 129–139. New York: John Wiley 1949.Google Scholar
  2. 2.
    Trench, W.: An algorithm for the inversion of finite Toeplitz matrices. J. Soc. Indust. Appl. Math.12, 515–522 (1964).Google Scholar
  3. 3.
    —— An algorithm for the inversion of finite Hankel matrices. J. Soc. Indust. Appl. Math.13, 1102–1107 (1965)Google Scholar
  4. 4.
    —— Weighting coefficients for the prediction of stationary time series from the finite past. SIAM J. Appl. Math.15, 1502–1510 (1967)Google Scholar
  5. 5.
    Bareiss, E.: Numerical inversion of finite Toeplitz matrices and vector Toeplitz matrices. Argonne National Laboratory Report No. ANL-7440 (June 1968).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Erwin H. Bareiss
    • 1
  1. 1.Applied Mathematics DivisionArgonne National LaboratoryArgonnezUSA

Personalised recommendations