Numerische Mathematik

, Volume 14, Issue 5, pp 403–420 | Cite as

Singular value decomposition and least squares solutions

  • G. H. Golub
  • C. Reinsch
Handbook Series Linear Algebra


Mathematical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Businger, P., Golub, G.: Linear least squares solutions by Householder transformations. Numer. Math.7, 269–276 (1965).Google Scholar
  2. 2.
    Forsythe, G. E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix. Proc. Amer. Math. Soc.94, 1–23 (1960).Google Scholar
  3. 3.
    — Golub, G.: On the stationary values of a second-degree polynomial on the unit sphere. J. Soc. Indust. Appl. Math.13, 1050–1068 (1965).Google Scholar
  4. 4.
    — Moler, C. B.: Computer solution of linear algebraic systems. Englewood Cliffs, New Jersey: Prentice-Hall 1967.Google Scholar
  5. 5.
    Francis, J.: TheQ R transformation. A unitary analogue to theL R transformation. Comput. J.4, 265–271 (1961, 1962).Google Scholar
  6. 6.
    Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. SIAM. Numer. Anal., Ser. B2, 205–224 (1965).Google Scholar
  7. 7.
    — Least squares, singular values, and matrix approximations. Aplikace Matematiky13, 44–51 (1968).Google Scholar
  8. 8.
    Hestenes, M. R.: Inversion of matrices by biorthogonalization and related results. J. Soc. Indust. Appl. Math.6, 51–90 (1958).Google Scholar
  9. 9.
    Kogbetliantz, E. G.: Solution of linear equations by diagonalization of coefficients matrix. Quart. Appl. Math.13, 123–132 (1955).Google Scholar
  10. 10.
    Kublanovskaja, V. N.: Some algorithms for the solution of the complete problem of eigenvalues. V. Vyčisl. Mat. i. Mat. Fiz.1, 555–570 (1961).Google Scholar
  11. 11.
    Martin, R. S., Reinsch, C., Wilkinson, J. H.: Householder's tridiagonalization of a symmetric matrix. Numer. Math.11, 181–195 (1968).Google Scholar
  12. 12.
    Wilkinson, J.: Error analysis of transformations based on the use of matrices of the formI-2w w H. Error in digital computation, vol. II, L.B. Rall, ed., p. 77–101. New York: John Wiley & Sons, Inc. 1965Google Scholar
  13. 13.
    — Global convergence ofQ R algorithm. Proceedings of IFIP Congress, 1968.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • G. H. Golub
    • 1
  • C. Reinsch
    • 2
  1. 1.Computer Science Dept.Stanford UniversityStanfordUSA
  2. 2.Mat. Institut der Techn. HochschuleMünchen 2

Personalised recommendations