Numerische Mathematik

, Volume 14, Issue 5, pp 403–420 | Cite as

Singular value decomposition and least squares solutions

  • G. H. Golub
  • C. Reinsch
Handbook Series Linear Algebra

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Businger, P., Golub, G.: Linear least squares solutions by Householder transformations. Numer. Math.7, 269–276 (1965).Google Scholar
  2. 2.
    Forsythe, G. E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix. Proc. Amer. Math. Soc.94, 1–23 (1960).Google Scholar
  3. 3.
    — Golub, G.: On the stationary values of a second-degree polynomial on the unit sphere. J. Soc. Indust. Appl. Math.13, 1050–1068 (1965).Google Scholar
  4. 4.
    — Moler, C. B.: Computer solution of linear algebraic systems. Englewood Cliffs, New Jersey: Prentice-Hall 1967.Google Scholar
  5. 5.
    Francis, J.: TheQ R transformation. A unitary analogue to theL R transformation. Comput. J.4, 265–271 (1961, 1962).Google Scholar
  6. 6.
    Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. SIAM. Numer. Anal., Ser. B2, 205–224 (1965).Google Scholar
  7. 7.
    — Least squares, singular values, and matrix approximations. Aplikace Matematiky13, 44–51 (1968).Google Scholar
  8. 8.
    Hestenes, M. R.: Inversion of matrices by biorthogonalization and related results. J. Soc. Indust. Appl. Math.6, 51–90 (1958).Google Scholar
  9. 9.
    Kogbetliantz, E. G.: Solution of linear equations by diagonalization of coefficients matrix. Quart. Appl. Math.13, 123–132 (1955).Google Scholar
  10. 10.
    Kublanovskaja, V. N.: Some algorithms for the solution of the complete problem of eigenvalues. V. Vyčisl. Mat. i. Mat. Fiz.1, 555–570 (1961).Google Scholar
  11. 11.
    Martin, R. S., Reinsch, C., Wilkinson, J. H.: Householder's tridiagonalization of a symmetric matrix. Numer. Math.11, 181–195 (1968).Google Scholar
  12. 12.
    Wilkinson, J.: Error analysis of transformations based on the use of matrices of the formI-2w w H. Error in digital computation, vol. II, L.B. Rall, ed., p. 77–101. New York: John Wiley & Sons, Inc. 1965Google Scholar
  13. 13.
    — Global convergence ofQ R algorithm. Proceedings of IFIP Congress, 1968.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • G. H. Golub
    • 1
  • C. Reinsch
    • 2
  1. 1.Computer Science Dept.Stanford UniversityStanfordUSA
  2. 2.Mat. Institut der Techn. HochschuleMünchen 2

Personalised recommendations