Advertisement

Numerische Mathematik

, Volume 9, Issue 5, pp 386–393 | Cite as

Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection

  • W. Barth
  • R. S. Martin
  • J. H. Wilkinson
Handbook Series Linear Algebra

Keywords

Mathematical Method Tridiagonal Matrix Symmetric Tridiagonal Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bowdler, H. J., C. Reinsch, andJ. H. Wilkinson: TheQR algorithm for symmetric tridiagonal matrices (to be published in this series).Google Scholar
  2. [2]
    Givens, J. W.: Numerical computation of the characteristic values of a real symmetric matrix. Oak Ridge National Laboratory, ORNL-1574 (1954).Google Scholar
  3. [3]
    Rutishauser, H.: Stabile Sonderfalle des Quotienten-Differenzen-Algorithmus. Numerische Mathematik5, 95–11 (1963).CrossRefGoogle Scholar
  4. [4]
    Wilkinson, J. H.: Error analysis of floating-point computation. Numerische Mathematik2, 319–340 (1960).CrossRefGoogle Scholar
  5. [5]
    —— Calculation of the eigenvalue of a symmetric tridiagonal matrix by the method of bisection. Numerische Mathematik4, 362–367 (1962).CrossRefGoogle Scholar
  6. [6]
    —— The algebraic eigenvalue problem. London: Oxford University Press 1965.Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • W. Barth
    • 1
    • 2
  • R. S. Martin
    • 1
    • 2
  • J. H. Wilkinson
    • 1
    • 2
  1. 1.Rechenzentrum Technische HochschuleDarmstadt
  2. 2.National Physical LaboratoryTeddington, MiddlesexGreat Britain

Personalised recommendations