Numerische Mathematik

, Volume 11, Issue 3, pp 232–256 | Cite as

Piecewise Hermite interpolation in one and two variables with applications to partial differential equations

  • G. Birkhoff
  • M. H. Schultz
  • R. S. Varga


Differential Equation Partial Differential Equation Mathematical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlin, A. C.: A bivariate generalization of Hermite's interpolation formula. Math. Comp.18, 264–273 (1964).Google Scholar
  2. 2.
    Beckenbach, E., andR. Bellman: Inequalities. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  3. 3.
    Birkhoff, G., andC. de Boor: Piecewise polynomial interpolation and approximation. Approximation of functions.H. L. Garabedian, ed. New York: Elsevier 1965.Google Scholar
  4. 4.
    —, andA. Priver: Hermite interpolation errors for derivatives. J. Math. and Phys. (to appear).Google Scholar
  5. 5.
    Bramble, J. H., andB. E. Hubbard: On the formulation of finite difference analogs of the Dirichlet problem for Poisson's equation. Numer. Math.4, 313–327 (1962).CrossRefGoogle Scholar
  6. 6.
    Céa, Jean: Approximation variationnelle des problemès aux limites. Ann. Inst. Fourier (Grenoble).14, 345–444 (1964).Google Scholar
  7. 7.
    Ciarlet, P. G., M. H. Schultz, andR. S. Varga: Numerical methods of highorder accuracy for nonlinear boundary value problems. I. One dimensional problem. Numer. Math.9, 394–430 (1967).CrossRefGoogle Scholar
  8. 8.
    Collatz, L.: The numerical treatment of differential equations. Third edition, pp. 348 ff. Berlin-Göttingen-Heidelberg: Springer 1959Google Scholar
  9. 9.
    Davis, Philip J.: Interpolation and approximation. New York: Blaisdell Publishing Co. 1963.Google Scholar
  10. 10.
    Herbold, R. J.: Consistent quadrature schemes for the numerical solution of boundary value problems by variational techniques. Doctoral Thesis. Case Western Reserve University. 1967.Google Scholar
  11. 11.
    Kellogg, R. B.: Difference equations on a mesh arising from a general triangulation. Math. Comp.18, 203–210 (1964).Google Scholar
  12. 12.
    —— An error estimate for elliptic difference equations on a convex polygon. SIAM J. Numer. Anal.3, 79–90 (1966).CrossRefGoogle Scholar
  13. 13.
    Nitsche, Joachim, andJohannes C. C. Nitsche: Error estimates for the numerical solution of elliptic differential equations. Arch. Rational Mech. Anal.5, 293–306 (1960).Google Scholar
  14. 14.
    Peano, G.: Resto nelle formule di quadratura expresso con un integrale definito. Atti Accad. Naz. Lincei Rend.22, 562–569 (1913).Google Scholar
  15. 15.
    Petryshyn, W. V.: Direct and iterative methods for the solution of linear operator equations in Hilbert space. Trans. Amer. Math. Soc.105, 136–175 (1962).Google Scholar
  16. 16.
    Polsky, N. I.: Projection methods in applied mathematics. Dokl. Akad. Nauk SSSR.143, 787–790 (1962).Google Scholar
  17. 17.
    Pólya, G.: Sur une interprétation de la méthode des différence finies qui peut fournir des bornes supérieures ou inférieures. C. R. Acad. Sci. Paris.235, 995–997 (1952).Google Scholar
  18. 18.
    Sard, Arthur: Linear approximation. Mathematical Survey 9. Providence, Rhode Island: American Mathematical Society 1963.Google Scholar
  19. 19.
    Schultz, M. H., andR. S. Varga:L-splines. Numer. Math.10, 345–369 (1967).Google Scholar
  20. 20.
    Simonsen, W.: On numerical differentiation of functions of several variables. Skand. Aktuarietidskr.42, 73–89 (1959).Google Scholar
  21. 21.
    Stancu, D. D.: L'expression du reste dans quelques formules de dérivation partielle numérique. Acad. R. P. Romîne Fil. Cluj Stud. Cerc. Mat.11, 371–380 (1960).Google Scholar
  22. 22.
    —— The remainder of certain linear approximation formulas in two variables. SIAM J. Numer. Anal. Ser. B.1, 137–163 (1964).CrossRefGoogle Scholar
  23. 23.
    Synge, J. L.: The hypercircle in mathematical physics, pp. 168 ff. London: Cambridge Univ. Press 1957.Google Scholar
  24. 24.
    Varga, R. S.: Hermite interpolation-type Ritz methods for two-point boundary value problems. Numerical solution of partial differential equations. (365–373). New York: Academic Press 1966.Google Scholar
  25. 25.
    Weinberger, H. F.: Upper and lower bounds for eigenvalues by finite difference methods. Comm. Pure Appl. Math.9, 613–623 (1956).Google Scholar
  26. 26.
    Yosida, K.: Functional analysis. (458 pp.) New York: Academic Press 1965.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • G. Birkhoff
    • 1
  • M. H. Schultz
    • 1
  • R. S. Varga
    • 1
  1. 1.Department of MathematicsCase Western Reserve UniversityCleveland

Personalised recommendations