Numerische Mathematik

, Volume 11, Issue 3, pp 181–195 | Cite as

Householder's tridiagonalization of a symmetric matrix

  • R. S. Martin
  • C. Reinsch
  • J. H. Wilkinson
Handbook Series Linear Algebra

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth, W., R. S. Martin, andJ. H. Wilkinson: Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Numerische Mathematik9, 386–393 (1967).CrossRefGoogle Scholar
  2. 2.
    Bowdler, H., C. Reinsch, R. S. Martin, andJ. H. Wilkinson: TheQ L algorithm for symmetric tridiagonal matrices. (To appear in this series.)Google Scholar
  3. 3.
    Ortega, J. M.: An error analysis ofHouseholder's method for the symmetric eigenvalue problem. Numerische Mathematik5, 211–225 (1963).CrossRefGoogle Scholar
  4. 4.
    Wilkinson, J. H.:Householder's method for symmetric matrices. Numerische Mathematik4, 354–361 (1962).CrossRefGoogle Scholar
  5. 5.
    —— Calculation of the eigenvectors of a symmetric tridiagonal matrix by inverse iteration. Numerische Mathematik4, 368–376 (1962).CrossRefGoogle Scholar
  6. 6.
    —— The algebraic eigenvalue problem. London: Oxford University Press 1965.Google Scholar
  7. 7.
    — Calculation of the eigenvectors of a symmetric tridiagonal matrix by inverse iteration. (Improved version to appear in this series.)Google Scholar
  8. 8.
    Reinsch, C., andF. L. Bauer: RationalQR transformation with Newton shift for symmetric tridiagonal matrices. Numerische Mathematik11, 264–272 (1968).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • R. S. Martin
    • 1
  • C. Reinsch
    • 2
  • J. H. Wilkinson
    • 1
  1. 1.National Physical LaboratoryMathematics Division TeddingtonMiddlesexGreat Britain
  2. 2.Mathematisches Institut der Technischen HochschuleMünchen 2

Personalised recommendations