Journal of Mathematical Biology

, Volume 14, Issue 1, pp 1–23 | Cite as

Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias

  • Michael R. Guevara
  • Leon Glass
Article

Abstract

A mathematical model for the perturbation of a biological oscillator by single and periodic impulses is analyzed. In response to a single stimulus the phase of the oscillator is changed. If the new phase following a stimulus is plotted against the old phase the resulting curve is called the phase transition curve or PTC (Pavlidis, 1973). There are two qualitatively different types of phase resetting. Using the terminology of Winfree (1977, 1980), large perturbations give a type 0 PTC (average slope of the PTC equals zero), whereas small perturbations give a type 1 PTC. The effects of periodic inputs can be analyzed by using the PTC to construct the Poincaré or phase advance map. Over a limited range of stimulation frequency and amplitude, the Poincaré map can be reduced to an interval map possessing a single maximum. Over this range there are period doubling bifurcations as well as chaotic dynamics. Numerical and analytical studies of the Poincaré map show that both phase locked and non-phase locked dynamics occur. We propose that cardiac dysrhythmias may arise from desynchronization of two or more spontaneously oscillating regions of the heart. This hypothesis serves to account for the various forms of atrioventricular (AV) block clinically observed. In particular 2∶2 and 4∶2 AV block can arise by period doubling bifurcations, and intermittent or variable AV block may be due to the complex irregular behavior associated with chaotic dynamics.

Key words

Cardiac dysrhythmias Phase locking Chaos Period doubling bifurcations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V. I.: Small denominators. I. Mappings of the circumference onto itself. Trans. of the A.M.S. Series 2.46, 213–284 (1965)Google Scholar
  2. Arnold, V. I.: Ordinary differential equations. Cambridge, Mass.: MIT Press, 1973Google Scholar
  3. Ayers, J. L., Selverston, A. I.: Synaptic control of an endogenous pacemaker network. J. Physiol. (Paris)73, 454–561 (1977)Google Scholar
  4. Bellet, S.: Clinical disorders of the heart beat (3rd edition). Philadelphia: Lea and Febiger, 1971Google Scholar
  5. Cartwright, M. L., Littlewood, J. E.: On nonlinear differential equations of the second order: I. The equation\(\ddot y - k(1 - y^2 )\dot y + y = b\lambda k cos(\lambda t + \alpha )\),k large. J. London Math. Soc.20, 180–189 (1945)Google Scholar
  6. Chung, E. K.: Principles of cardiac arrhythmias. Baltimore: Williams and Wilkins, 1971Google Scholar
  7. Crutchfield, J. P., Huberman, B. A.: Fluctuations and the onset of chaos. Phys. Lett.A77, 407–409 (1980)CrossRefGoogle Scholar
  8. Flaherty, J. E., Hoppensteadt, F. C.: Frequency entrainment of a forced van der Pol oscillator. Studies in Appl. Math.58, 5–15 (1978)Google Scholar
  9. Glass, L., Mackey, M. C.: A simple model for phase locking of biological oscillators. J. Math. Biol.7, 339–352 (1979)CrossRefGoogle Scholar
  10. Glass, L., Graves, C., Petrillo, G. A., Mackey, M. C.: Unstable dynamics of a periodically driven oscillator in the presence of noise. J. theor. Biol.86, 455–475 (1980)CrossRefGoogle Scholar
  11. Gollub, J. P., Romer, E. J., Socolar, J. E.: Trajectory divergence for coupled relaxation oscillators: Measurements and models. J. Stat. Phys.23, 321–333 (1980)CrossRefGoogle Scholar
  12. Grant, R. P.: The mechanism of A-V arrhythmias with an electronic analogue of the human A-V node. Am. J. Med.20, 334–344 (1956)CrossRefGoogle Scholar
  13. Guckenheimer, J.: On the bifurcation of maps of the interval. Inventiones Math.39, 165–178 (1977)CrossRefGoogle Scholar
  14. Guckenheimer, J.: Symbolic dynamics and relaxation oscillations. Physica1D, 227–235 (1980)Google Scholar
  15. Guevara, M. R., Glass, L., Shrier, A.: Phase locking, period doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science214, 1350–1353 (1981)Google Scholar
  16. Guttman, R., Feldman, L., Jakobsson, E.: Frequency entrainment of squid axon membrane. J. Memb. Biol.56, 9–18 (1980)CrossRefGoogle Scholar
  17. Herman, M. R.: Mesure de Lebesgue et nombre de rotation. In: Lecture notes in mathematics, no. 597, Geometry and topology, pp. 271–293. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  18. Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952)Google Scholar
  19. Holden, A. V.: The response of excitable membrane models to a cyclic input. Biological Cybernetics21, 1–7 (1976)CrossRefPubMedGoogle Scholar
  20. Hoppensteadt, F. C.: Electrical models of neurons. Lectures in Appl. Math.19, 327–344 (1981)Google Scholar
  21. Huberman, B. A., Crutchfield, J. P.: Chaotic states of anharmonic systems in periodic fields. Phys. Rev. Lett.43, 1743–1747 (1979)CrossRefGoogle Scholar
  22. James, T. N., Isobe, J. H., Urthaler, F.: Correlative electrophysiological and anatomical studies concerning the site of origin of escape rhythm during complete atrioventricular block in the dog. Circ. Res.45, 108–119 (1979)Google Scholar
  23. Jalife, J., Moe, G. K.: A biologic model of parasystole. Am. J. Cardiol.43, 761–772 (1979)CrossRefGoogle Scholar
  24. Katholi, C. R., Urthaler, F., Macy, J. Jr., James, T. N.: A mathematical model of automaticity in the sinus node and AV junction based on weakly coupled relaxation oscillators. Comp. Biomed. Research10, 529–543 (1977)CrossRefGoogle Scholar
  25. Keener, J. P.: Chaotic behaviour in piecewise continuous difference equations. Trans. Am. Math. Soc.261, 589–604 (1980)Google Scholar
  26. Keener, J. P.: Chaotic cardiac dynamics. Lectures in Appl. Math.19, 299–325 (1981a)Google Scholar
  27. Keener, J. P.: On cardiac arrhythmias: AV conduction block. J. Math. Biol.12, 215–225 (1981b)Google Scholar
  28. Keener, J. P., Hoppensteadt, F. C., Rinzel, J.: Integrate and fire models of nerve membrane response to oscillatory inputs. SIAM J. Appl. Math.41, 503–517 (1981)CrossRefGoogle Scholar
  29. Knight, B. W.: Dynamics of encoding in a population of neurons. J. General Physiol.59, 734–766 (1972)CrossRefGoogle Scholar
  30. Landahl, H. D., Griffeath, D.: A mathematical model for first degree block and the Wenckebach phenomenon. Bull. Math. Biophys.33, 27–38 (1971)Google Scholar
  31. Levi, M.: Qualitative analysis of the periodically forced relaxation oscillations. Memoirs Amer. Math. Soc.32, Number 244 (1981)Google Scholar
  32. Levinson, N.: A second order differential equation with singular solutions. Ann. Mathem.50, 127–153 (1949)Google Scholar
  33. Lewis, T., Mathison, G. C.: Auriculo-ventricular heart block as a result of asphyxia. Heart2, 47–53 (1910)Google Scholar
  34. Li, T.-Y., Yorke, J. A.: Period three implies chaos. Am. Math. Monthly82, 985–992 (1975)Google Scholar
  35. Mandel, W. J. (ed.): Cardiac arrhythmias: Their mechanisms, diagnosis, and management. Philadelphia: J. B. Lippincott, 1980Google Scholar
  36. May, R. M.: Simple mathematical models with very complicated dynamics. Nature261, 459–467 (1976)CrossRefPubMedGoogle Scholar
  37. McAllister, R. E., Noble, D., Tsien, R. W.: Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. (London)251, 1–59 (1975)Google Scholar
  38. Metropolis, N., Stein, M. L., Stein, P. R.: On finite limit sets for transformation on the unit interval. J. Combinat. Theor.15, 25–44 (1973)CrossRefGoogle Scholar
  39. Moe, G. K., Jalife, J., Mueller, W. J., Moe, B.: A mathematical model of parasystole and its application to clinical arrhythmias. Circulation56, 968–979 (1977)Google Scholar
  40. Moulopoulos, S. D., Kardaras, N., Sideris, D. A.: Stimulus-response relationship in dog ventricle in vivo. Am. J. Physiol.208, 154–157 (1965)Google Scholar
  41. Nadeau, R. A., James, T. N.: The behaviour of atrio-ventricular nodal rhythm following direct perfusion of the sinus node. Can. J. Physiol. Pharmacol.44, 317–324 (1966)Google Scholar
  42. Pavlidis, T.: Biological oscillators: Their mathematical analysis. New York: Academic Press 1973Google Scholar
  43. Perkel, D. H., Schulman, J. H., Bullock, T. H., Moore, G. P., Segundo, J. P.: Pacemaker neurons: Effects of regularly spaced synaptic input. Science145, 61–63 (1964)Google Scholar
  44. Petrillo, G. A.: Phase locking: A dynamic approach to the study of respiration. Ph.D. Thesis. McGill University (Montreal) 1981Google Scholar
  45. Pinsker, H. M.:Aplysia bursting neurons as endogenous oscillators. II. Synchronization and entrainment by pulsed inhibitory synaptic input. J. Neurophysiol.40, 544–556 (1977)Google Scholar
  46. Reid, J. V. O.: The cardiac pacemaker: Effects of regularly spaced nervous input. Am. Heart J.78, 58–64 (1969)CrossRefGoogle Scholar
  47. Roberge, F. A., Nadeau, R. A., James, T. N.: The nature of the PR interval. Cardiovasc. Res.2, 19–30 (1968)Google Scholar
  48. Roberge, F. A., Nadeau, R. A.: The nature of Wenckebach cycles. Can. J. Physiol. Pharmacol.42, 695–704 (1969)Google Scholar
  49. Šarkovskii, A. N.: Coexistence of cycles of a continuous map of a line into itself. Ukr. Mat. Z.16, 61–71 (1964)Google Scholar
  50. Schamroth, L.: The disorders of cardiac rhythm. Oxford: Blackwell 1971Google Scholar
  51. Scott, S. W.: Stimulation simulations of young yet cultured beating hearts. Ph.D. Thesis. S. U. N. Y. (Buffalo) 1979Google Scholar
  52. Segers, M.: L'alternance du temps de conduction auriculo-ventriculaire. Arch. Mal. Coeur44, 525–527 (1951)Google Scholar
  53. Sideris, D. A., Moulopoulos, S.D.: Mechanism of atrioventricular conduction: Study on an analogue. J. Electrocardiol.10, 51–58 (1977)Google Scholar
  54. Štefan, P.: A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line. Commun. math. Phys.54, 237–248 (1977)CrossRefGoogle Scholar
  55. Tomita, K., Kai, T.: Chaotic behavior of deterministic orbits: The problem of turbulent phase. Prog. Theor. Physics (Suppl. No.64), 280–294 (1978)Google Scholar
  56. Tsien, R. W., Siegelbaum, S.: Excitable tissue: The heart, chapter 20. In: Andreotti, T. E., Hoffman, J. F., Fanestil, D. D. (eds.), Physiology of membrane disorders. New York: Plenum 1978Google Scholar
  57. Urthaler, F., Katholi, C. R., Macy, J. Jr., James, T. N.: Mathematical relationship between automaticity of the sinus node and the AV junction. Am. Heart J.86, 189–196 (1973)CrossRefGoogle Scholar
  58. Urthaler, F., Katholi, C. R., Macy, J. Jr., James, T. N.: Electrophysiological and mathematical characteristics of the escape rhythm during complete AV block. Cardiovasc. Res.8, 173–186 (1974)Google Scholar
  59. Ushiyama, J., Brooks, C. McC.: Interaction of oscillators: Effect of sinusoidal stretching of the sinoatrial node on nodal rhythm. J. Electrocardiol.10, 39–44 (1977)Google Scholar
  60. van der Pol, B., van der Mark, J.: The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil. Mag.6, 763–775 (1928)Google Scholar
  61. van der Tweel, L. H., Meijler, F. L., van Capelle, F. J. L.: Synchronization of the heart. J. Appl. Physiol.34, 283–287 (1973)Google Scholar
  62. Watanabe, T., Dreifus, L. S.: Atrioventricular block: Basic concepts. Chapter 16. In: Mandel, W. J. (ed.), Cardiac arrhythmias: Their mechanisms, diagnosis, and management. Philadelphia: J. B. Lippincott 1980Google Scholar
  63. Winfree, A. T.: Resetting biological clocks. Physics Today28, 34–39 (1975)Google Scholar
  64. Winfree, A. T.: Phase control of neural pacemakers. Science197, 761–763 (1977)Google Scholar
  65. Winfree, A. T.: The geometry of biological time. New York: Springer 1980Google Scholar
  66. Ypey, D. L., Von Meerwijk, W. P. M., Ince, E., Groos, G.: Mutual entrainment of two pacemaker cells. A study with an electronic parallel conductance model. J. Theor. Biol.86, 731–755 (1980)CrossRefGoogle Scholar
  67. Zaslavsky, G. M.: The simplest case of a strange attractor. Physics69A, 145–147 (1978)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Michael R. Guevara
    • 1
  • Leon Glass
    • 1
  1. 1.Department of PhysiologyMcGill UniversityMontrealCanada

Personalised recommendations