Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Inhomogeneous cosmological models with homogeneous inner hypersurface geometry

  • 60 Accesses

  • 27 Citations

Abstract

Space-times which allow a slicing into homogeneous spatial hypersurfaces generalize the usual Bianchi models. One knows already that in these models the Bianchi type may change with time. Here we show which of the changes really appear. To this end we characterize the topological space whose points are the 3-dimensional oriented homogeneous Riemannian manifolds; locally isometric manifolds are considered as identical.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Krasiński, A. (1993).Physics in an inhomogeneous universe (ZGUW Warsaw).

  2. 2.

    Krasiński, A. (1994).Acta Cosmologica 20, 67; (1995).Inhomogeneous Cosmological Models (Cambridge University Press, Cambridge), in press.

  3. 3.

    Collins, C. B. (1979).Gen. Rel. Grav. 10, 925.

  4. 4.

    Krasiński, A. (1983).Gen. Rel. Grav. 15, 673.

  5. 4a.

    Krasiński, A. (1981).Gen. Rel. Grav. 13, 1021.

  6. 5.

    Szekeres, P. (1975).Commun. Math. Phys. 41, 55.

  7. 6.

    Schmidt, H.-J. (1982).Astron. Nachr. 303, 283.

  8. 7.

    Schmidt, H.-J. (1982).Astron. Nachr. 303, 227.

  9. 8.

    Wolf, J. (1967).Spaces of constant curvature (McGraw-Hill, New York).

  10. 9.

    Karlhede, A., and MacCallum, M. A. H. (1982).Gen. Rel. Grav. 14, 673.

  11. 10.

    Szafron, D. (1981).J. Math. Phys. 22, 543.

  12. 11.

    Bona, C., and Coll, B. (1992).J. Math. Phys. 33, 267.

  13. 12.

    Paiva, F., Rebouças, M., and MacCallum, M. A. H. (1993).Class. Quant. Grav. 10, 1165.

  14. 13.

    Schmidt, H.-J. (1988).J. Math. Phys. 29, 1264.

  15. 14.

    Schmidt, H.-J. (1987).J. Math. Phys. 28, 1928.

  16. 15.

    Rainer, M. (1994). “The topology of the space of real Lie algebras up to dimension 4 with applications to homogeneous cosmological models.” Ph. D. thesis, Universität Potsdam.

  17. 16.

    Segal, I. (1951).Duke Math. J. 18, 221.

  18. 17.

    Conatser, C. (1972).J. Math. Phys. 13, 196.

  19. 18.

    Levy-Nahas, M. (1967).J. Math. Phys. 8, 1211.

  20. 19.

    Saletan, E. (1961).J. Math. Phys. 2, 1.

  21. 20.

    Schempp, W. (1986).Harmonic analysis on the Heisenberg nilpotent Lie group (Wiley. New York).

  22. 21.

    Kaplan, A. (1983).Bull. Lond. Math. Soc. 15, 35.

  23. 22.

    Bianchi, L. (1897).Mem. della Soc. Italiana delle Scienze Ser. 3a 11, 267.

  24. 23.

    Bianchi, L. (1918).Lezioni Sulla Teoria Dei Gruppi Continui Finiti Di Trasformazioni (Spoerri, Pisa).

  25. 24.

    Lie, S., and Engel, F. (1888).Theorie der Transformationsgruppen (Teubner, Leipzig). (Part 3 of this textbook, which contains the classification of the 3-dimensional Lie algebras, appeared in 1893. The 3 volumes together have more than 2000 pages. Sometimes, this textbook is cited without the second author.)

  26. 25.

    Lie, S. (1891).Differentialgleichungen (Chelsea, Leipzig).

  27. 26.

    Lee, H. C. (1947).J. Math. Pures et Appl. 26, 251.

  28. 27.

    Ellis, G. F. R., and MacCallum, M. A. H. (1969).Commun. Math. Phys. 12, 108.

  29. 28.

    Estabrook, F., Wahlquist, H., and Behr, C. (1968).J. Math. Phys. 9, 497.

  30. 29.

    Davies, P., and Twamley, J. (1993).Class. Quant. Grav. 10, 931.

  31. 30.

    Ambrose, W., and Singer, I. (1958).Duke Math. J. 25, 647.

  32. 31.

    Tricerri, F., and Vanhecke, L. (1983).Homogeneous structures on Riemannian manifolds (Cambridge University Press, Cambridge).

  33. 32.

    Christodoulakis, T., and Korfiatis, E. (1992).J. Math. Phys. 33, 2868.

  34. 33.

    Vranceanu, G. (1964).Leçons de Géométrie différentielle (Hermann, Paris).

  35. 34.

    Milnor, J. (1976).Adv. Math. 21, 293.

  36. 35.

    Reiß, A. (1993). “Krümmungsinvarianten in 3-dimensionalen homogenen Riemannschen Räumen.” Staatsexamensarbeit, Universität Potsdam.

  37. 36.

    Slansky, R. (1981).Phys. Rep. 79, 1.

  38. 37.

    Ziller, W. (1982).Math. Ann. 259, 351.

  39. 38.

    Koike, T., Tanimoto, M., and Hosoya, A. (1994).J. Math. Phys. 35, 4855.

  40. 39.

    Bona, C., and Coll, B. (1994).J. Math. Phys. 35, 873.

  41. 40.

    Schmidt, H.-J. (1994). “Why do all the curvature invariants of a gravitational wave vanish?” Preprint Universität Potsdam Math 94/03, gr-qc/9404037. To appear inNew frontiers in gravitation, G. Sardanashvili, R. Santilli, eds.

  42. 41.

    Nomizu, K. (1979).Osaka J. Math. 16, 143.

  43. 42.

    Alias, L., Romero, A., and Sánchez, M. (1995).Gen. Rel. Grav. 27, 71.

  44. 43.

    Lachieze-Rey, M., and Luminet, J.-P. (1995).Phys. Rep. 254, 13.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rainer, M., Schmidt, H. Inhomogeneous cosmological models with homogeneous inner hypersurface geometry. Gen Relat Gravit 27, 1265–1293 (1995). https://doi.org/10.1007/BF02153317

Download citation

Keywords

  • Manifold
  • Riemannian Manifold
  • Topological Space
  • Differential Geometry
  • Cosmological Model