Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modulation and selection of neurotransmitter responses during synapse formation between identified leech neurons


  1. 1.

    Serotonin (5-HT) modulates two different responses in the pressure sensitive neurons (P) of the leech: an inhibitory, Cl dependent synaptic response and a depolarizing extrasynaptic response.

  2. 2.

    Serotonergic Retzius cells (R)in vivo and in culture elicit inhibitory Cl dependent responses in P neurons. Moreover, at discrete sites of contact between R and P cells, the excitatory response to 5-HT is gradually lost prior to synapse formation. This phenomenon is specifically mediated by R cells.

  3. 3.

    The extrasynaptic response is mediated by cation channels sensitive to protein kinase C (PKC). Cation channels are present at the sites of contact but they become insensitive to PKC. Moreover, cation channels from single P cells are no longer modulated by PKC if they are inserted (by cramming the patch pipette) into the cytoplasm of a P cell in contact with an R cell.

  4. 4.

    Blockers of tyrosine kinases prevent the uncoupling of cation channel modulation and inhibit synapse formation between the R and the P neurons.

  5. 5.

    We suggest that cell contact induces an intracellular, tyrosine kinase-dependent signal as part of the mechanism of neuronal recognition leading to synapse formation.

This is a preview of subscription content, log in to check access.


  1. Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., and Fukami, Y. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinases.J. Biol. Chem. 262:5592–5595.

  2. Atashi, J. R., Klinz, S. G., Ingraham, C. A., Mattern, W. T., Schachner, M., and Maness, P. F. (1992). Nerual cell adhesion molecules modulate tyrosine phosphorylation of tubulin in nerve growth cone membrane.Neuron 8:831–842.

  3. Baker, L. P., and Peng, H. B. (1993) Tyrosine phosphorylation and acetylcholine receptor cluster formation in culturedXenopus muscle cells.J. Cell Biol. 120:185–195.

  4. Bard, J. A., Zgombick, J., Adham, N., Vaysse, P., Branchek, T. A., and Weinshank, R. L. (1993). Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase.J. Biol. Chem. 268(31):23422–23426.

  5. Barnekow, A., Jahn, R., and Schartl, M. (1990). Synaptophysin: A substrate for the protein tyrosine kinase pp60c-src in intact synaptic vesicles.Oncogene 5:1019–1024.

  6. Bixby, J. L., and Jhabvala, P. (1993). Tyrosine phosphorylation in early embryonic growth cones.J. Neurosci. 13:3421–3432.

  7. Bloch, R. J., and Pumplin, D. W. (1988). Molecular events in synaptogenesis: Nerve-muscle adhesion and postsynaptic differentiation.Am. J. Physiol. 254:C345-C364.

  8. Brown, E., Kendall, D. A., and Nahorski, S. R. (1984). Inositol phospholipid hydrolysis in rat cerebral cortical slices. I. Receptor characterization.J. Neurochem. 42:1379–1387.

  9. Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., and Soltoff, S. (1991). Oncogenes and signal transduction.Cell 64:281–302.

  10. Catarsi, S., and Drapeau, P. (1992). Loss of extrasynaptic channel modulation by protein kinase C underlies the selection of serotonin responses in an identified leech neuron.Neuron 8:275–281.

  11. Catarsi, S., and Drapeau, P. (1993). Tyrosine kinase-dependent selection of transmitter responses induced by neural contact.Nature 363:353–355.

  12. Catarsi, S., Ching, S., Merz, D. C., and Drapeau, P. (1995). Tyrosine phosphorylation during synapse formation between identified neurons.J. Physiol. 485:775–786.

  13. Ching, S., Catarsi, S., and Drapeau, P. (1993). Selection of transmitter responses at sites of neurite contact during synapse formation between identified leech neurons.J. Physiol. 468:425–439.

  14. Chiquet, M., and Nicholls, J. G. (1987). Neurite outgrowth and synapse formation by identified leech neurones in culture.J. Exp. Biol. 132:191–206.

  15. Cohen, M. W., Rodriguez-Marin, E., and Wilson, E. M. (1987). Distribution of synaptic specializations along isolated motor units formed inXenopus nerve-muscle cultures.J. Neurosci. 7:2849–2861.

  16. Conn, P. J., and Sanders-Bush, E. (1985). Serotonin-stimulated phosphoinositide turnover: Mediation of the S2 binding site in rat cerebral cortex but not in subcortical regions.J. Pharmacol. Exp. Ther. 234:195–203.

  17. DeVivo, M., and Maayani, S. (1986). Characterization of the 5-hydroxytryptamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes.J. Pharmacol. Exp. Ther. 238:248–253.

  18. Drapeau, P. (1990). Loss of channel modulation by transmitter and protein kinase C during innervation of an identified leech neuron.Neuron 4:875–882.

  19. Drapeau, P., and Sanchez-Armass, S. (1988). Selection of postsynaptic serotonin receptors during reinnervation of an identified leech neuron in culture.J. Neurosci. 8:4718–4727.

  20. Drapeau, P., and Sanchez-Armass, S. (1989). Parallel processing and selection of the responses to serotonin during reinnervation of an identified leech neuron in culture.J. Neurobiol. 20:312–325.

  21. Drapeau, P., Melinyshyn, E., and Sanchez-Armass, S. (1989). Contact-mediated loss of the non-synaptic response to transmitter during reinnervation of an identified leech neuron in culture.J. Neurosci. 9:2502–2508.

  22. Easter, S. S., Jr., Purves, D., Rakic, P., and Spitzer, N. C. (1985). The changing view of neural specificity.Science 230:507–511.

  23. Elkins, T., Zinn, K., McAllister, L., Hoffmann, F. M., and Goodman, C. S. (1990). Genetic analsyis of aDrosophila neural cell adhesion molecule: Interaction of Fasciclin I and Abelsen tyrosine kinase mutations.Cell 60:565–575.

  24. Falls, D. L., Rosen, K. M., Corfas, G., Lane, W. S., and Fischbach, G. D. (1993). ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the Neu ligand family.Cell 72:801–815.

  25. Fuchs, P., Nicholls, J. G., and Ready, D. F. (1981). Membrane properties and selective connections of identified leech neurones in culture.J. Physiol. 316:203–223.

  26. Fuchs, P., Henderson, L. P., and Nicholls, J. G. (1982). Chemical transmission between individual Retzius and sensory neurones of the leech in culture.J. Physiol. 323:195–210.

  27. Gerschenfeld, H. M. (1973). Chemical transmission in invertebrate central nervous systems and neuromuscular junctions.Physiol. Rev. 53:1–119.

  28. Gerschenfeld, H. M., and Paupardin-Tritsch (1974). On the transmitter function of 5-hydroxytryptamine at excitatory and inhibitory monosynaptic junctions.J. Physiol. 243:457–481.

  29. Goodman, C. S., and Shatz, C. J. (1993). Developmental mechanisms that generate precise patterns of neuronal connectivity.Cell 72/Neuron 10 (Suppl.):77–98.

  30. Grant, S. G. N., O'Dell, T. J., Karl, K. A., Stein, P. L., Soriano, S. P., and Kandel, E. R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development infyn mutant mice.Nature 258:1903–1910.

  31. Henderson, L. P. (1983). The role of 5-hydroxytrptamine as a transmitter between identified leech neurones in culture.J. Physiol. 339:309–324.

  32. Hidaka, H., and Kobayashi, R. (1992). Pharmacology of protein kinase inhibitors.Annu. Rev. Pharmacol. Toxicol. 32:377–397.

  33. Huang, X. Y., Morielli, A. D., and Peralta E. G. (1993). Tyrosine kinase-dependent suppression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor.Cell 75:1145–1156.

  34. Humphrey, P. P. A., Hartig, P., and Hoyer, D. (1993). A proposed new nomenclature for 5-HT receptors.Trends Pharmacol. Sci. 14(6):233–236.

  35. Katz, B., and Miledi, R. (1972). The statistical nature of the acetylcholine potential and its molecular components.J. Physiol. 224:665–699.

  36. Keegan, K., and Halegoua, S. (1993). Signal transduction pathways in neuronal differentiation.Curr. Opin. Neurobiol. 3:14–19.

  37. Kendall, D. A., and Nahorski, S. R. (1985). 5-hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacological characterization and effects of antidepressants.J. Pharmacol. Exp. Ther. 233:473–479.

  38. Kramer, R. H. (1990). Patch cramming; monitoring intracellular messengers in intact cells with membrane patches containing detector ion channels.Neuron 2:335–341.

  39. Kirstan, W. B., and Nusbaum, M. P. (1982). The dual role of serotonin in leech swimming.J. Physiol. (Paris) 78:743–747.

  40. Martin, G. R., and Humphrey, P. P. A. (1994). Receptors for 5-hydroxytryptamine. Current perspectives on classification and nomenclature.Neuropharmacology 33(3–4):261–273.

  41. Merz, D. C., and Drapeau, P. (1992). Cell-specific contact selects responses to transmitter in ann identified leech neuron.Proc. Roy. Soc. Lond. (B) 248:129–133.

  42. Merz, D. C., and Drapeau, P. (1994a). Segmental specificity of neuronal recognition during synapse formation between identified leech neurons.J. Neurosci. 14(7):4125–4129.

  43. Merz, D. C., and Drapeau, P. (1994b). Cell surface contact mediates neuronal recognition and synapse formation between two identified leech neurons.J. Neurobiol. 25(8):1029–1037.

  44. Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C., and Sakmann, B. (1986). Molecular distinction between fetal and adult forms of muscle acetylcholine receptor.Nature 321:406–411.

  45. Monsma, F. J., Jr., Shen, Y., Ward, R. P., Hamblin, M. W., and Sibley, D. R. (1993). Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic.Mol. Pharmacol. 43:320–327.

  46. Muller, K. J., Nicholls, J. G., and Stent, G. S. (Eds.) (1981).Neurobiology of the Leech, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

  47. Nairn, A. C., and Shenolikar, S. (1992). The role of protein phosphatases in synaptic transmission, plasticity and neuronal development.Curr. Opin. Neurobiol. 2:296–301.

  48. Neher, E., and Sakmann, B. (1976). Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibers.J. Physiol. 258:705–729.

  49. Nicoll, R. A. (1988). The coupling of neurotransmitter receptors to ion channels in the brain.Science 241:545–551.

  50. O'Dell, T. J., Kandel, E. R., and Grant, S. G. N. (1991). Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors.Nature 353:558–560.

  51. Peng, H. B., Baker, L. P., and Dai, A. (1993). A role of tyrosine phosphorylation in the formation of acetylcholine receptor clusters induced by electric fields in culturedXenopus muscle cells.J. Cell Biol. 120:197–204.

  52. Peroutka, S. J. (1993). 5-hydroxytryptamine receptors.J. Neurochem. 60(2):408–416.

  53. Purves, D., and Lichtman, J. W. (Eds.) (1985).Principles of Neural Development, Sinauer Associates, Sunderland, MA.

  54. Ready, D. F., and Nicholls, J. G. (1979). Identified neurons isolated from leech CNS make selective connections in culture.Nature 281:67–68.

  55. Sanchez-Armass, S., Merz, D. C., and Drapeau, P. (1991). Distinct receptors, second messengers and conductances underlying the dual responses to serotonin in an identified leech neuron.J. Exp. Biol. 155:531–547.

  56. Schlessinger, J. (1988). Signal transduction by allosteric receptor oligomerization.Trends Biochem. Sci. 13: 443.

  57. Schlessinger, J., and Ulrich, A. (1992). Growth factor signaling by receptor tyrosine kinases.Neuron 9:383–391.

  58. Shenker, A., Maayani, S., Weinstein, H., and Green, J. P. (1985). Two 5-HT receptors linked to adenylate cyclase guinea pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone.Eur. J. Pharmacol. 109:427–429.

  59. Siegelbaum, S. A. (1994). Ion channel control by tyrosine phosphorylation.Current Biol. 4:242–245.

  60. Sugamori, K. S., Sunahara, R. K., Guan, H., Bulloch, A. G. M., Tensen, C. P., Seeman, P., Niznik, H. B., and Van Tol, H. H. M. (1993). Serotonin receptor cDNA cloned fromLymnaea stagnalis.Proc. Natl. Acad. Sci. USA 90:11–15.

  61. Tecott, L. H., and Julius, D. (1993). A new wave of serotonin receptors.Curr. Opin. Neurobiol. 3:310–315.

  62. Wagner, K. R., Mei, L., and Huganir, R. L. (1991). Protein tyrosine kinases and phosphatases in the nervous system.Curr. Opin. Neurobiol. 1:65–73.

  63. Wallace, B. G., Qu, Z., and Huganir, R. L. (1991). Agrin induces phosphorylation of the nicotinic acetylcholine receptor.Neuron 6:869–878.

  64. Wilson, G. F., and Kaczmarek, L. K. (1993). Mode-switching of a voltage-gated cation channel is mediated by a protein kinase A-regulated tyrosine phosphatase.Nature 366:433–438.

  65. Witz, P., Amlaiky, N., Plassat, J. L., Maroteaux, L., Borrelli, E., and Hen, R. (1990). Cloning and characterization of aDrosophila serotonin receptor that activates adenylate cyclase.Proc. Natl. Acad. Sci. USA 87:8940–8944.

  66. Zipser, B., and McKay, R. (1981). Monoclonal antibodies distinguish identifiable neurons in the leech.Nature 289:549–554.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Catarsi, S., Drapeau, P. Modulation and selection of neurotransmitter responses during synapse formation between identified leech neurons. Cell Mol Neurobiol 16, 699–713 (1996).

Download citation

Key words

  • synapse formation
  • leech neurons
  • serotonin
  • channel modulation