Advertisement

Cellular and Molecular Neurobiology

, Volume 16, Issue 6, pp 661–676 | Cite as

Transient and sustained expression of FMRFamide-like immunoreactivity in the developing nervous system ofLymnaea stagnalis (mollusca, pulmonata)

  • Elena E. Voronezhskaya
  • K. Elekes
Article

Summary

  1. 1.

    In the present study we have investigated the ontogeny of FMRFamide expression in the snail,Lymnaea stagnalis, from its first appearance to its distribution in young adults.

     
  2. 2.

    The first FMRFamide-like immunoreactive (FaLI) cells within CNS appear by E45 embryonic stage (premetamorphic veliger). The number of FaLI neurons increases throughout both pre- and post-hatching development.

     
  3. 3.

    Both transient and sustained expression of FMRFamide-like immunoreactivity by specific sets of neurons occurs. Two cells which transiently express immunoreactivity appear outside the future CNS by the stage E45. Other population of transient FaLI neurons includes bilaterally symmetric groups of cells in the cerebral and pedal ganglia during posthatching stages P1 (hatchlings) to P5 (juveniles). All other immunostained cells which appear during development maintain their transmitter phenotype into adulthood.

     
  4. 4.

    The possible role of FMRFamide-related peptides in the processes of morpho- and neurogenesis is discussed.

     

Key Words

gastropod mollusc development neuropeptides FMRFamide immunoreactivity Lymnaea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamin, P. R., and Burke, J. (1994) Alternative mRNA splicing of the FMRFamide gene and its role in neuropeptidergic signaling in a defined neural network.BioAssays 16:335–342.Google Scholar
  2. Benjamin, P. R. Buckett, K. J., and Peters, M. (1988). Neurones containing FMRFamide-like peptides in the model invertebrate system,Lymnaea. InNeurobiology of Invertebrates. Transmitters, Modulators, Receptors (J. Salánki and K. S-Rózsa, Eds.), Akadémiai Kiadó, pp. 247–259.Google Scholar
  3. Bright, K., Kellett, E., Saunders, S. E., Brierley, M., Burke, J. F., and Benjamin, P. R. (1993). Mutually exclusive expression of alternatively spliced FMRFamide transcripts in identified neuronal systems of the snailLymnaea.J. Neurosci. 13(6):2719–2729.Google Scholar
  4. Croll, R. P., and Chiasson, B. J. (1989). Postembryonic development of serotoninlike immunoreactivity in the central nervous system of the snail,Lymnaea stagnalis.J. Comp. Physiol. 280:122–142.Google Scholar
  5. Davis, N. T., Homberg, U., Dircksen, H., Levine, R. B. and Hildebrand, J. G. (1993). Crustacean cardioactive peptide-immunoreactive neurons in the hawkmothManduca sexta and changes in their immunoreactivity during postembryonic development.J. Comp. Neurol. 338:612–627.Google Scholar
  6. Ebberink, R. H. M., Price, D. A., van Loenhout, H., Doble, K. E., Riehm, J. P., Geraerts, W. P. M., and Greenberg, M. J. (1987). The brain ofLymnaea contains a family of FMRFamide like peptides. Peptides8:515–522.Google Scholar
  7. Ebbesson, L. O. E., Holmqvist B., Ostholm, T., and Ekström, P. (1992). Transient serotoninimmunoreactive neurons coincide with a critical period of neural development in coho salmon (Oncorhynchus kisutch).Cell Tissue Res. 268:389–392.Google Scholar
  8. Elekes, K., and Nässel, D. (1990). Distribution of FMRFamide-like immunoreactive neurons in the central nervous system of the snailHelix pomatia.Cell Tissue Res. 262:177–190.Google Scholar
  9. Gesser, B. P., and Larson, L. I. (1985). Changes from enkephalin-like to gastrin/cholecystokinin-like immunoreactivity in snail neurons.J. Neurosci. 5:1412–1417.Google Scholar
  10. Goldberg, J. I., and Kater, S. B. (1989). Expression and function of the neurotransmistter serotonin during development of theHelisoma nervous system.Dev. Biol. 131:483–495.Google Scholar
  11. Kempf, S. C., Chun, G. V., and Hadfield, M. G. (1992). An immunocytochemical search for potential neurotransmitters in larvae ofPhestilla sibogae (Gastropoda, Opistobranchia).Comp. Biochem. Physiol. 101V(2):299–305.Google Scholar
  12. Kobayashi, M., and Muneoka, Y. (1990). Structure and action of molluscan neuropeptides.Zool Sci. 7:801–817.Google Scholar
  13. Koizumi, O., and Bode, H. (1986). Plasticity in the nervous system of adult hydra. I. The position-dependent expression of FMRFamide-like immunoreactivity.Dev. Biol. 116:407–421.Google Scholar
  14. Koizumi, O., and Bode, H. (1991). Plasticity in the nervous system of adult hydra. III. Conversion of neurons to expression of a vasopressin-like immunoreactivity depends on axial location.J. Neurosci. 11:2011–2020.Google Scholar
  15. Landis, S., and Keefe, D. (1983). Evidence for neurotransmitter plasticity in vivo: Development changes in properties of cholinergic sympathetic neurons.Dev. Biol. 98:349–372.Google Scholar
  16. Linacre, A., Kellett, E., Saunders, S., Bright, K., Benjamin, P. R., and Burke, J. (1990). Cardioactive neuropeptide Phe−Met−Arg−Phe−NH2 (FMRFamide) and novel related peptides are encoded in multiple copies by a single gene in the snail (Lymnaea stagnalis).J. Neurosci. 10:412–419.Google Scholar
  17. Marois, R., and Croll, R. P. (1992). Development of serotoninlike immunoreactivity in the embryonic nervous systems of the snailLymnaea stagnalis.J. Comp. Neurol. 322:255–265.Google Scholar
  18. May, R. H., Ridgway, R. L., and Moffet, S. B. (1987). Size and number of serotonin immunoreactive cells change with age in adults of the snailMelampus.Soc. Neurosci. Abstr. 13:1070.Google Scholar
  19. McAllister, L. B., Scheller, R. H., Kandel, E. R., and Axel, R. (1983). In situ hybridization to study the origin and fate of identified neurons.Science 222:800–808.Google Scholar
  20. Mescheriakov, V. N. (1975). The pond snailLymnaea stagnalis L. InObjects of Developmental Neurobiology, Nauka, Moscow, pp. 53–94.Google Scholar
  21. Morill, J. B. (1982). Development of the pulmonate gastropod,Lymnaea InDevelopment Biology of Freshwater Invertebrates, Alan R. Liss, New York, pp. 399–483.Google Scholar
  22. Nezlin, L. P., Moroz, L. L., Elofsson, R., and Sakharov, D. A. (1994). Immunolabeled neuroactiv substances in the osphradium of the pond snailLymnaea stagnalis.Cell Tissue Res. 275:269–275.Google Scholar
  23. Nolen, T. G., Mindell, J. A., and Carew, T. J. (1986). Development of neurotransmitters implicated in learning in Aplysia.Soc. Neurosci. Abstr. 12:399.Google Scholar
  24. Potter, D. D., Landis, S. C., Matsumoto, S. G., and Furschpan, E. J. (1986). Synaptic function in rat sympathetic neurons. II. Adrenergic/cholinergic dual status and plasticity.J. Neurosci. 6:1080–1098.Google Scholar
  25. Price, D. A., Davies, N. W., Doble, K. E., and Greenberg, M. J. (1987). The distribution of the FMRFamide-related peptides in molluscs.Zool. Sci. 4:395–410.Google Scholar
  26. Raven, C. H. P. (1958).Morphogenesis: The Analysis of Molluscan Development. Pergamon Press, London-New York-Paris-Los Angeles.Google Scholar
  27. Santama, N., Li, K. W., Bright, K. E., Yeoman, M., Geraerts, W. P., Benjamin, P. R., and Burke, J. F. (1993). Processing of the FMRFamide precursor protein in the snailLymnaea stagnalis: characterization and neuronal localization of novel peptide, “SEEPLY”Eur. J. Neurosci. 5(8):1003–1016.Google Scholar
  28. Schot, L. P. C., and Boer, H. H. (1982). Immunocytochemical demonstration of peptidergic cells in the pond snailLymnaea stagnalis with an antiserum to the molluscan cardioactive neuropeptide FMRF-amide.Cell Tissue Res. 225:347–354.Google Scholar
  29. Shotzinger, R. J., and Landis, S. (1988). Cholinergic phenotype developed by noradrenergic sympathetic neurons after innervation of a novel cholinergic targetin vivo.Nature 335:637–639.Google Scholar
  30. Skingsley, D. R., Bright, K., Santama, N., van Minnen, J., Brierley, M. J., Burke, J. F., and Benjamin, P. R. (1993). A molecularly defined cardiorespiratory interneuron expressing SDPLRFamide/GDPLRFamide in the snailLymnaea: Monosynaptic connections and pharmacology,J. Neurophysiol. 69:915–927.Google Scholar
  31. Sternberger, L. A. (1979).Immunocytochemistry, John Wiley and Sons, New York.Google Scholar
  32. Tublitz, N. J. (1993). Steroid-induced transmitter plasticity in insect peptidergic neurons.Comp. biochem. Physiol. 105C(2):147–154.Google Scholar
  33. Voronezhskaya, E. E. (1990). Neuronal catecholamines in embryogenesis of the pond snailLymnaea stagnalis.Ontogenesis 21(6):593–597.Google Scholar
  34. Voronezhskaya, E. E., and Elekes, K. (1993). Distribution of serotonin-like immunoreactive in the embryonic nervous system of lymnaeid and planorid snails.Neurobiology 1:371–383.Google Scholar
  35. Voronezhskaya, E. E., Pavlova, G. A., and Sakharov, D. A. (1992). Possible control of molluscan embryogenesis by neuronal catecholamines.Ontogenesis 23(3):295.Google Scholar
  36. Voronezhskaya, E. E., Pavlova, G. A., and Sakharov, D. A. (1993). Effects of haloperidol and methylergomethrine on embryonic motility and development of the pond snailLymnaea stagnalis.Ontogenez 24(6):40–47.Google Scholar
  37. Walker, R. J. (1992). Neuroactive peptides with an RFamide or Famide carboxyl terminals.Comp. Biochem. Physiol. 102C:213–222.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Elena E. Voronezhskaya
    • 1
    • 2
  • K. Elekes
    • 1
  1. 1.Balaton Limnological Research Institute of the Hungarian Academy of SciencesTihanyHungary
  2. 2.Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations