Lasers in Medical Science

, Volume 10, Issue 2, pp 113–119 | Cite as

The effect of helium-neon laser irradiation on in vitro maturation and fertilization of immature bovine oocytes

  • J. M. Ocaña Quero
  • R. J. Gomez Villamandos
  • M. Moreno Millan
  • J. M. Santisteban Valenzuela
Original Articles


A study was made of the effects of low power laser irradiation on in vitro oocyte maturation rates and subsequent fertilization of immature bovine oocytes. Immature bovine oocytes from cows sacrificed at a slaughterhouse were irradiated with Helium-Neon laser (HeNe laser) irradiation at an energy density of 0.4 and 2.0 J cm−2. An oocyte group was left untreated, serving as control group. All oocytes were matured and fertilized in TCM-199 medium supplemented with 20% fetal calf serum (FCS). Maturation and fertilization rates obtained in the irradiated oocytes group were lower (p<0.001 andp<0.05, respectively) than those of the control group. Furthermore, the laser-treated oocytes showed important degenerative changes on both cytoplasm and chromosomes in comparison with untreated control oocytes which showed a homogenous cytoplasm and disperse chromosomes. It is concluded that the application of HeNe laser irradiation at 0.4 and 2.0 J cm−2 energy densities has a detrimental effect on in vitro maturation and fertilization process of immature bovine oocytes.

Key words

Radiation effects In vitro maturation In vitro fertilization HeNe laser irradiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biggers JD. In: Biggers JO, Schuetz W (eds)Oogenesis, Baltimore, Maryland: Univ. Park Press, 1972:241–52Google Scholar
  2. 2.
    McGaughey RW. A comparison of the fluids from small and large ovarian follicle of the pig.Biol Reprod 1975,13(2):147–53Google Scholar
  3. 3.
    Wasserman P. The mammalian ovum. In: Knobil E, Neill J (eds)The Physiology of Reproduction, Vol 1. New York: Raven Press, 1988:69–102Google Scholar
  4. 4.
    Warnes GM, Moor RM, Johnson MH. Changes in protein synthesis during maturation of sheep oocytes in vivo and in vitro.J Reprod Fertil 1977,49(2):331–5Google Scholar
  5. 5.
    Caspers K. Laser stimulation therapy.Physics and Medical Rehabilitation 1977,18(9):426–45Google Scholar
  6. 6.
    Kana J, Hana D, Waidelich W. Effect of low power density radiation on healing of open skin wounds in rats.Arch Surg 1981,116:291–6Google Scholar
  7. 7.
    Korvacs L. The stimulatory effect of laser on the physiological healing of portio surface.Lasers Surg Med 1981,1:241–52Google Scholar
  8. 8.
    Ribari O. The stimulating effect of low power laser rays: Experimental examinations in otorhinolaryngology.Reviews in Laryngology 1981,102:531–3Google Scholar
  9. 9.
    Passarella S, Casamassima E, Molinari S et al. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by HeNe laser.FEBS Lett 1984,175:95–9Google Scholar
  10. 10.
    Yamada K. Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1).Nippon Seikeigeka Gakki Zasshi 1991,65:787–99Google Scholar
  11. 11.
    Tominaga R. Effects of HeNe laser irradiation on fibroblasts derived from scar tissue of rat palatal mucosa (Jpn).Kokubyo Gakki Zasshi 1990,57:580–5Google Scholar
  12. 12.
    Nara Y, Tsukamoto Y, Fukutani S et al. Stimulative effect of HeNe laser irradiation on cultured fibroblasts derived from human dental pulp.Lasers Life Sci 1992,4(4):249–52Google Scholar
  13. 13.
    Herbert KE, Bhusate LL, Scott DL et al. Effect of laser light at 820 nm on adenosine nucleotide levels in human lymphocytes.Lasers Life Sci 1989,3(1):37Google Scholar
  14. 14.
    Karu TI, Kalendo GS, Letokhov VS. Comparison of the action of powerful pulses of ultrashort UV on the DNA replication and transcription functions in proliferating and resting HeLa cells (Rus).Radiobiologiia 1984,24:17–20Google Scholar
  15. 15.
    Karu TI, Smolyaninova N, Selenin A. Long-term and short-term responses of human lymphocytes to HeNe laser radiation.Lasers Life Sci 1991,4(3):167Google Scholar
  16. 16.
    Devlin TM.Textbook of Biochemistry—with Clinical Correlations, 2nd edn. New York: John Wiley & Sons, 1986:123Google Scholar
  17. 17.
    Calderhead RG. On the correct reporting of parameters and consistent use of terminology in reporting clinical and experimental LLLT procedures.Laser Ther 1990,3:2Google Scholar
  18. 18.
    Ball GD, Leibfried ML, Lenz RW et al. Bovine fertilization in vitro: A temperature sensitive process.J Anim Sci 1982, 336Google Scholar
  19. 19.
    Wheeland RG, Walker NPJ. Lasers 25 years later.Int J Dermatol 1986,25:209–16Google Scholar
  20. 20.
    Abergel P, Meeker A, Lam S et al. Control of connective tissue metabolism by lasers: Recent developments and future prospects.J Am Acad Dermatol 1984,11:1142–50Google Scholar
  21. 21.
    Trelles MA, Mayayo E. Bone fracture consolidates faster with low-power laser.Lasers Surg Med 1987,7:36–45Google Scholar
  22. 22.
    Goldman JA, Chiapella J, Casey H et al. Laser therapy of rheumatoid arthritis.Lasers Surg Med 1980,1:93–101Google Scholar
  23. 23.
    Ocaña Quero JM, Gomez Villamandos R, Moreno Millan M, Santisteban Valenzuela JM. The effect of the Helium-Neon laser radiation on the in vitro fertilization of bovine oocytes. Proceedings of the 11th European Coll. Cytogenet. Domest. Anim. 1994, 174–8Google Scholar
  24. 24.
    Bielanski A, Hare WCD. Development in vitro of bovine embryos after exposure to continuous helium-neon laser light.Theriogenology 1992,37:192Google Scholar
  25. 25.
    Hirao Y, Yanagimachi R. Detrimental effect of visible light on meiosis of mammalian eggs in vitro.J Exp Zool 1978,206:365–70Google Scholar
  26. 26.
    Basford JR. Low-energy laser therapy: Controversies and new research findings.Lasers Surg Med 1989,9:1–5Google Scholar
  27. 27.
    Karu TI.Photobiology of Low-Power Laser Therapy. Chur: Harwood Academy Publishers, 1989:205Google Scholar
  28. 28.
    Karu TI. Effects of visible radiation on cultured cells.Photochem Photobiol 1990,52(6):1089Google Scholar
  29. 29.
    Tiphlova O, Karu TI. Role of primary photoacceptors in low-power laser effects: Action of HeNe laser radiation on bacteriophage T4-Escherichia coli interaction.Lasers Surg Med 1989,9:67Google Scholar
  30. 30.
    Karu TI, Tiphlova O. Stimulation ofE. coli growth by laser and incoherent red light.II Nuovo Cimento 1983,2D(4):1138Google Scholar
  31. 31.
    Karu TI, Tiphlova O. Effect of irradiation with monochromatic visible light on cAMP content in Chinese hamster fibroblast.II Nuovo Cimento 1987,9D(10):1245Google Scholar
  32. 32.
    Cheng LY, Packer L. Photodamage to hepatocytes by visible light.FEBS Lett 1979,97:124Google Scholar
  33. 33.
    Parshad R, Sanford KK, Taylor WG et al. Effect of intensity and wavelength of fluorescent light on chromosome damage in cultured mouse cells.Photochem Photobiol 1979,29:971Google Scholar
  34. 34.
    Tyrrell RM, Pidoux M. Action spectra for human skin cells: Estimates of the relative cytotoxicity of the middle ultraviolet, near ultraviolet, and violet regions of sunlight on epidermal keratinocytes.Cancer Res 1987,47:1825Google Scholar
  35. 35.
    Loevschall H.Survey of Preliminary Low Level Laser Reports (Danish), Roskilde: Roskilde University, 1989:45Google Scholar
  36. 36.
    O'Kane S, Shields DT, Gilmore WS, Allen JM. Low intensity laser irradiation inhibits tritiated thymidine incorporation in the hemopoietic cell lines HL-60 and U937.Lasers Surg Med 1994,14:34–9Google Scholar
  37. 37.
    Olson JE, Schimmerling W, Gundy GC, Tobias CA. Laser microirradiation of cerebellar neurons in culture. Electrophysiological and morphological effects.Cell Biophys 1981,3:349Google Scholar
  38. 38.
    McKelvey VJ, Keegan AL, Allen JM. Induction of DNA damage by low level laser irradiation in Friend mouse erythroleukemia cells.Mutat Res 1992,271:131Google Scholar
  39. 39.
    Pardee AB, Dubrow R, Hamlin JL, Kletzien RF. Animal cell cycle.Ann Rev Biochem 1978,47:715–50Google Scholar
  40. 40.
    Lucke-Huhle C. Alpha-irradiation induced G2 delay. A period of cell recovery.Radiat Res 1982,89:298–308Google Scholar
  41. 41.
    Passarella S, Roncali L, Cicero R, Quagliariello E. New ultrastructural conformations of mitochondria irradiated in vitro with a helium-neon laser.Lasers Life Sci 1988,2(3):161–71Google Scholar
  42. 42.
    Lehninger AL. Mitochondria and calcium ion transport.Biochem J 1970 118:129–38Google Scholar
  43. 43.
    Bradley MP, Forrester IT. A sodium calcium exchange mechanism in plasma membrane vesicles isolated from ram flagella.FEBS Lett 1980,121:15–18Google Scholar
  44. 44.
    Babcock DF, Pfeiffer DR. Independent elevation of cytosolic Ca2+ and Ph of mammalian sperm by voltage dependent and pH sensitive mechanism.J Biol Chem 1987,262:15041–7Google Scholar
  45. 45.
    Sallet C, Passarella S, Quagliariello E. Effects of selective irradiation on mammalian mitochondria.Photochem Photobiol 1987,45:433–8Google Scholar
  46. 46.
    Darnell J, Lodish H, Baltimore D.Molecular Cell Biology, 2nd edn. New York: Scientific American Books, Inc., 1990:345Google Scholar
  47. 47.
    Alberts B, Bray D, Lewis J et al.Molecular Biology of the Cell, 2nd edn. New York & London: Garland Publishing Inc., 1989:67Google Scholar
  48. 48.
    Shepherd GM.Neurobiology, New York: Oxford University Press, 1983:123Google Scholar
  49. 49.
    Halliwell B, Gutteridge JMC.Free Radicals in Biology and Medicine, 2nd edn. Oxford: Oxford University Press, 1989:89Google Scholar

Copyright information

© W.B. Saunders Company Ltd 1995

Authors and Affiliations

  • J. M. Ocaña Quero
    • 1
  • R. J. Gomez Villamandos
    • 2
  • M. Moreno Millan
    • 1
  • J. M. Santisteban Valenzuela
    • 2
  1. 1.Department of Genetics, Laboratory of Cytogenetics, Faculty of Veterinary MedicineUniversity of CordobaSpain
  2. 2.Department of Animal Pathology, Faculty of Veterinary MedicineUniversity of CordobaSpain

Personalised recommendations