Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Production of crystallizable fragments of membrane proteins

Abstract

Many membrane proteins feature autonomously folded extramembranous domains which, when isolated from the intact protein, perform biochemical functions relevant to biological activity. Whereas intact membrane proteins usually require detergent solubilization for purification, most extramembranous fragments are soluble in aqueous solution. If appropriately constructed, such fragments are often crystallizable and the resulting atomic structures can lead to important biological insight. In most instances, these fragments are produced in recombinant expression systems. To be crystallizable, molecular fragments should be uniform in composition and conformation and be available in abundance. Considerations for the production of crystallizable fragments of membrane proteins include the definition of fragment boundaries, the control of nonuniformities introduced by glycosylation or phosphorylation, and optimization of expression systems. These aspects are addressed here in general terms and in the case studies of applications to CD4, CD8, the insulin receptor kinase, and N-cadherin.

This is a preview of subscription content, log in to check access.

References

  1. Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C. (1987).Proc. Natl. Acad. Sci. USA 84, 5730–5734.

  2. Arthos, J., Deen, C. K., Chaikin, M. A., Fornwald, J. A., Sattentau, Q. J., Clapham, P. R., Weiss, R. A., McDougal, J. S., Pietropaolo, C., Maddon, P. J., Truneh, A., Axel, R., and Sweet, R. W. (1989).Cell 57, 469–481.

  3. Banner, D. W., D'Arcy, A., Janes, W., Gentz, R., Schoenfeld, H.-J., Broger, C., Loetscher, H., and Lesslauer, W. (1993).Cell 73, 431–445.

  4. Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., and Wiley, D. C. (1987).Nature 329, 506–512.

  5. Bork, P. (1992).Curr. Opinion Struct. Biol. 2, 413–421.

  6. Brady, R. L., Dodson, E. J., Dodson, G. G., Lange, G., Davis, S. J., Williams, A. F., and Barclay, A. N. (1993)Science 260, 979–983.

  7. Carr, S. A., Hemling, M. E., Folena-Wasserman, G., Sweet, R. W., Anumula, K., Barr, J. R., Huddleston, M. J., and Taylor, P. (1989).J. Biol. Chem. 264, 21286–21295.

  8. Chang, C.-H., El-Kabbani, O., Tiede, D., Noms, J., and Schiffer, M. (1991).Biochemistry 30, 5352–5360.

  9. Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., Jansonius, J. N., and Rosenbusch, J. P. (1992).Nature 358, 727–733.

  10. Diesenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1984).J. Mol. Biol. 180, 385–398.

  11. deVos, A. M., Ultsch, M., and Kossiakoff, A. A. (1992).Science 255, 306–312.

  12. Driscoll, P. C., Cyster, J. G., Campbell, I. D., and Williams, A. F. (1991).Nature 353, 762–765.

  13. Healey, D., Dianda, L., McDougal, J. S., Moore, J. P., Moore, M. J., Estess, P., Kwong, P. D., Buck, D., Beverley, P. C. L., and Sattentau, Q. J. (1990).J. Exp. Med., in press.

  14. Henderson, R., Baldwin J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing K. H. (1990).J. Mol. Biol. 213, 899–929.

  15. Hendrickson, W. A. (1992).Curr. Biol. 2, 57–59.

  16. Hendrickson, W. A., Kwong, P. D., Leahy, D. J., Ryu, S.-E., Yamaguchi, H., Fleury, S., and Sekaly, R.-P. (1992).Cold Spring Harbor Symp. Quant. Biol. 57, 549–556.

  17. Hubbard, S. R., Wei, L., Ellis, L., and Hendrickson W. A., (1994).Nature 372, 746–754.

  18. Ibegbu, C. C., Kennedy, M. S., Caddon, P. J., Deen, K. C., Hicks, D., Sweet, R. W., and McDougal, J. S. (1989).J. Immunol. 142, 2250–2256.

  19. Iwata, S., Ostermeier, C., Ludwig, G., and Michel, H. (1995).Nature 376, 660–669.

  20. Jones, E. Y., Davis, S. J., Williams, A. F., Harlos, K., and Stuart, D. I. (1992).Nature 360, 232–239.

  21. Kozono, H., White, J., Clements, J., Marrack, P., and Kappler, J. W. (1994).Nature 369, 151–154.

  22. Kuhlbrandt, W., Wang, D. N., and Fujiyoshi, Y. (1994).Nature 367, 614–621.

  23. Kwong, P. D., Ryu, S.-E., Hendrickson, W. A., Axel, R., Sweet, R. M., Folena-Wasserman, G., Hensley, P., and Sweet, R. W. (1990).Proc. Natl. Acad Sci. USA 87, 6423–6427.

  24. Leahy, D. J., Axel, R., and Hendrickson, W. A. (1992a).Cell 68, 1145–1162.

  25. Leahy, D. J., Hendrickson, W. A., Aukhil, I., and Erickson, H. P. (1992b).Science 258, 987–991.

  26. McDermott, G., Prince, S. M., Freer, A. A., Hawthornwaite-Lawless, A. M., Papiz, M. Z., Cogdell, R. J., and Isaacs, N. W. (1995).Nature 374, 517–521.

  27. Milburn, M. V., Privé, G. G., Milligan, D. L., Scott, W. G., Yeh, J., Jancarik, J., Koshland, D. E., Jr., and Kim, S.-H. (1991).Science 254, 1342–1347.

  28. Nilsson, B., Forsberg, G., Moks, T., Hartmanis, M., and Uhlén, M. (1992).Curr. Opinion Struct. Biol. 2, 569–575.

  29. Patthy, L. (1991).Curr. Opinion Struct. Biol. 1, 351–361.

  30. Picot, D., Loll, P. J., and Garavito, R. M. (1994).Nature,367, 243–249.

  31. Rosenberg, M., and Moss, B. (1990).Curr. Opinion Biotechnol. 1, 3–4.

  32. Ryu, S.-E., Kwong, P. D., Truneh, A., Porter, T. G., Arthos, J., Rosenberg, M., Dai, X., Xuong, N., Axel, R., Sweet, R. W., and Hendrickson, W. A. (1990).Nature 348, 419–426.

  33. Shapiro, L., Fannon, A. M., Kwong, P. D., Thompson, A., Lehmann, M. S., Grübel, G., Legrand, J.-F., Als-Nielsen, J., Colman, D. R., and Hendrickson, W. A. (1995).Nature 374, 327–337.

  34. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1995).Science 269, 1069–1074.

  35. Ullrich, A., and Schlessinger, J. (1990).Cell 61, 203–212.

  36. Varghese, J. N., Laver, W. G., and Colman, P. M. (1983).Nature 303, 35–40.

  37. Wei, L., Hubbard, S. R., Hendrickson W. A., and Ellis, L. (1995).J. Biol. Chem. 270, 8122–8130.

  38. Weiss, M. S., Kreusch, A., Schiltz, E., Nestel, U., Welte, W., Weckesser, J., and Schulz, G. E. (1991)FEBS Lett. 280, 379–382.

  39. White, C. E., Kempi, N. M., and Komives, E. A., (1994).Structure 2, 1003–1005.

  40. Wilson, I. A., Skehel, J. J., and Wiley, D. C. (1981).Nature 289, 366–373.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hendrickson, W.A. Production of crystallizable fragments of membrane proteins. J Bioenerg Biomembr 28, 35–40 (1996). https://doi.org/10.1007/BF02150676

Download citation

Key words

  • Proteolysis
  • deglycosylation
  • phosphorylation
  • protein expression
  • transmembrane proteins
  • CD4
  • CD8
  • tyrosine kinase
  • cadherin