Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Apamin: A highly selective and effective blocker of calcium-dependent potassium conductance

  • 24 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    L. V. Baidan, I. A. Vladimirova, G. A. Taran, and A. I. Miroshnikov, “Apamin action on synaptic transmission at different types of synapses” Dokl. Akad. Nauk SSSR,241, No. 5, 1224–1227 (1978).

  2. 2.

    L. V. Baidan and S. M. Tishkin, “Effects of apamin on synaptic transmission and inhibitory influence of ATP and noradrenaline of the guinea pig colon,” Fiziol. Zh.,29, No. 2, 181–185 (1983).

  3. 3.

    S. V. Vasilenko, S. V. Komissarenko, N. V. Prochukhan, et al., “Ultrastructural location of binding sites in smooth muscle of the guinea pig intestine,” Neurofiziologiya,17, No. 6, 824–827 (1985).

  4. 4.

    I. A. Vladimirova, and M. F. Shuba, “Effects of strychnine, hydrastine, and apamin on synaptic transmission in smooth muscle cells,” Neirofiziologiya,10, No. 3, 295–299 (1978).

  5. 5.

    I. A. Vladimirova and M. F. Shuba, “Synaptic processes in smooth muscle,” Neirofiziologiya,16, No. 3, 307–319 (1984).

  6. 6.

    V. Ya. Ganitkevich, L. V. Baidan, S. M. Tishkin, and M. F. Shuba, “Properties of synaptic currents during non-adrenergic inhibition of smooth muscle cells in the guinea pig large intestine,” Neurofiziologiya,15, No. 6, 624–631 (1983).

  7. 7.

    V. P. Zagorodnyuk and M. F. Shuba, “Nature of non-adrenergic inhibition in smooth muscle of the human intestine,” Neirofiziologiya,18, No. 3, 373–381 (1986).

  8. 8.

    P. G. Kostyuk, Calcium and Cell Excitability [in Russian], Nauka, Moscow (1986).

  9. 9.

    N. G. Kochemasova, “Effect of apamin on generation of action potentials in smooth muscle cells of the ureter,” Fiziol. Zh.,29, No. 2, 218–221 (1983).

  10. 10.

    A. I. Miroshnikov, E. G. Emenova, A. B. Kudelin, et al., “Research into physicochemical characteristics of the neurotoxin apamin from venom of the honeybeeApis mellifica,” Bioorg. Khimiya,4, No. 8, 1022–1028 (1978).

  11. 11.

    A. V. Romanenko, L. V. Baidan, A. G. Khalmuradov, and M. F. Shuba, “Mechanism underlying action of vitamin PP and nicotinic nucleotides on neuromuscular transmission in the guinea pig taenia coli,” Dokl. Akad. Nauk SSSR,255, No. 2, 493–496 (1980).

  12. 12.

    S. M. Tishkin, L. V. Baidan, and M. F. Shuba, “Ionic mechanisms underlying the excitatory action of ATP and noradrenaline on smooth muscle cells,” Fiziol. Zh.,27, No. 4, 521–526 (1981).

  13. 13.

    L. V. Baidan, S. M. Tishkin, and M. F. Shuba, “Possible mechanism of adrenergic and non-adrenergic inhibition of intestinal smooth muscle cells,” Pflügers Arch.,403, No. 3, 429–432 (1985).

  14. 14.

    B. Banks, G. M. Brown, G. M. Burgess, et al., “Apamin blocks certain neurotransmitter-induced increases in potassium permeability,” Nature,282, No. 5707, 415–417 (1979).

  15. 15.

    V. Bauer and H. Kuriyama, “The nature of non-cholinergic non-adrenergic transmission in longitudinal and circular muscles of the guinea-pig ileum,” J. Physiol.,332, 375–391 (1982).

  16. 16.

    N. Bkaily, N. Sperelakis, J. F. Renaug, and M. D. Payet, “Apamin, a highly specific Ca2+ blocking agent, in heart muscle,” Am. J. Physiol.,248, No. 6, H691-H967 (1985).

  17. 17.

    A. L. Blatz and K. L. Magleby, “Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle,” Nature,323, No. 6090, 718–720 (1986).

  18. 18.

    D. A. Brown, A. Constanti, and P. R. Adams, “Ca-activated K+ current in vertebrate sympathetic neurones,” Cell Calc.,4, No. 1, 407–420, (1983).

  19. 19.

    G. M. Burgess, M. Claret, and D. H. Jenkinson, “Effects of quinine and apamin on the Ca-dependent K+ permeability of mammalian hepatocytes and red cells,” J. Physiol.,317, 67–90 (1981).

  20. 20.

    R. A. Bywater, M. Holman, and G. Taylor, “Atropine-resistant depolarization in guineapig small intestine,” J. Physiol.,316, 369–379 (1981).

  21. 21.

    R. Coats, “Effects of apamin on α-adrenergic mediated changes in plasma potassium in guinea-pig,” Br. J. Pharmacol.,80, No. 1, 573–580 (1983).

  22. 22.

    C. Cognard, F. Traore, D. Potreau, and G. Raymond, “Effects of apamin on the outward potassium current of isolated frog skeletal muscle fibres,” Pflügers Arch.,402, No. 1, 222–224 (1984).

  23. 23.

    S. N. Cook, D. H. Haylett, and P. N. Strong, “High affinity binding of (125I) monoiodapamin to isolated guinea-pig hepatocytes,” FEBS Lett.,152, No. 2, 265–269 (1983).

  24. 24.

    S. N. Cook and D. H. Haylett, “Effects of apamin, quinine and neuromuscular blockers on Ca-activated potassium channels in guinea-pig hepatocytes,” J. Physiol.,358, 373–394 (1985).

  25. 25.

    M. Costa, J. B. Furness, and C. M. Humphreys, “Apamin distinguishes two types of relaxation mediated by enteric nerves in the guinea-pig gastrointestinal tracts,” Naunyn-Schmiedebergs Arch. Pharmakol.,332, No. 1, 79–88 (1986).

  26. 26.

    E. E. Daniel, L. P. Helmy-Elkony, A. Jager, and M. S. Kannan, “Neither a purine nor VIP is the mediator of inhibitory nerves of opossum oesophageal smooth muscle,” J. Physiol.,336, 243–260 (1983).

  27. 27.

    J. W. Deitmer and R. Eckert, “Two components of Ca-dependent K+ current in identified neurones ofAplysia californica,” Pflügers Arch.,403, No. 1, 353–359 (1985).

  28. 28.

    A. Den Hertog, “Ca2+ and the α-action of catecholamines on the guinea-pig taenia coli,” J. Physiol.,316, 109–125 (1981).

  29. 29.

    A. Den Hertog, D. Pielkenrood, R. Ras, and J. Den Akker, “The contribution of Ca2+ and K+ to the α-action of adrenaline on smooth muscle cells of the portal vein, pulmonary artery and taenia caeci of the guinea-pig,” Eur. J. Pharmacol.,98, No. 1, 223–234 (1984).

  30. 30.

    J. S. Fedan, J. K. Hogaboom, and J. P. O'Donnel, “Comparison of the effects of apamin Ca2+-dependent K+ channel blocker and arylazidoaminopropionyl ATP, a P2-purinergic receptor antagonist in the guinea-pig vas deferens,” Eur. J. Pharmacol.,104, No. 1, 327–334 (1984).

  31. 31.

    A. C. Field and D. H. Jenkinson, “The effects of noradrenaline on the ion permeability of isolated mammalian hepatocytes, studied by intracellular recording,” J. Physiol.,392, 493–512 (1987).

  32. 32.

    M. Fosset, H. Schmid-Antomarchi, M. Hugues, et al., “The presence in pig brain of an endogeneous equivalent of apamin, the bee, venom peptide that specifically blocks Ca2+-dependent K+ channels,” Proc. Natl. Acad. Sci. USA,81, No. 1, 7228–7232 (1984).

  33. 33.

    C. Gardos, “Function of Ca2+ in the K+ permeability of human erythrocytes,” Biochim. Biophys. Acta,30, No. 3, 653–654 (1958).

  34. 34.

    A. Gibson and J. Tucker, “The effects of VIP and ATP on the isolated anococcygeus muscle of the mouse,” Br. J. Pharmacol.,77, No. 1, 97–103 (1982).

  35. 35.

    N. I. Gokina and A. V. Gurkovskaya, The Effect of ATP on the Contractile and Electrical Activity of the Vascular Smooth Muscle, Academic Press, Varna (1979).

  36. 36.

    E. Habermann and K. G. Reiz, “Ein Neues Verfahren zur Gewinnung der Komponenten von Bienengift Insbesondere des Zentralwirk Samen Peptides Apamin,” Biochem. Z.,341, No. 7, 451 (1965).

  37. 37.

    A. Hermann and K. Hartung, “Ca2+-activated potassium conductance in molluscan neurones,” Cell Calc.,4, No. 1, 387–405 (1983).

  38. 38.

    M. Hugues, D. Duval, P. Kitabgi, et al., “Preparation of a pure monoiododerivative to rat brain synaptosomes,” J. Biol. Chem.,257, No. 6, 2762–2769 (1982).

  39. 39.

    H. Hughes, D. Duval, H. Schmid, et al., “Specific binding and pharmacological interactions of apamin, the neurotoxin from bee venom with guinea-pig colon,” Life Sci.,31, No. 5, 437–443 (1982).

  40. 40.

    M. Hugues, G., Romey, D. Duval, et al., “Apamin as selective blocker of the Ca2+-dependent K+ channel in neuroblastoma cells: voltage clamp and biochemical characterization of the toxic receptors,” Proc. Natl. Acad. Sci., USA,79, No. 4, 1308–1312 (1982).

  41. 41.

    M. Hugues, H. Schmid, and M. Lazdunski, “Identification of a protein component of the Ca2+-dependent K+ channel by affinity labelling with apamin,” Biochem. Biophys. Res. Commun.,107, No. 4, 1577–1582 (1982).

  42. 42.

    M. Lodal, O. Lundgren, and N. Sjoquist, “The effect of apamin on non-adrenergic noncholinergic vasodilator mechanism in the intestine of the cat,” J. Physiol.,338, 207–220 (1983).

  43. 43.

    T. Kawai and M. Watanabe, “Blockade of Ca2+-activated K+ conductance by apamin in rat sympathetic neurones,” Br. J. Pharmacol.,87, No. 1, 225–232 (1986).

  44. 44.

    B. Lancaster and P. R. Adams, “After-hyperpolarization by hippocampal neurones,” J. Neurophysiol.,55, No. 3, 1268–1282 (1986).

  45. 45.

    M. Lazdunski, “Apamin, a neurotoxin specific for one class of Ca2+-dependent K+ channels,” Cell Calc.,4, No. 1, 421–428 (1983).

  46. 46.

    P. Lebrun, I. Atwater, M. Claret, et al., “Resistance to apamin of the Ca2+-activated K+-permeability in pancreatic cells,” FEBS Lett.,161, No. 1, 41–44 (1983).

  47. 47.

    A. Maas and A. Den Hertog, “The effect of apamin on the smooth muscle cells of the guinea-pig taenia coli,” Eur. J. Pharmacol.,58, No. 7, 151–156 (1979).

  48. 48.

    K. Nakao, R. Inoue, K. Yamanaka, and K. Kitamura, “Action of quinidine and apamin on after-hyperpolarization of the spike in circular smooth muscle cells of the guinea-pig ileum,” Naunyn-Schmiedebergs Arch. Pharmakol.,334, No. 4, 508–513 (1986).

  49. 49.

    P. Pennefather, B. Lancaster, P. R. Adams, and R. A. Nicoll, “Two distinct Ca2+-dependent K+ currents in bullfrog sympathetic ganglion cells,” Proc. Natl. Acad. Sci., USA,82, No. 9, 3040–3044 (1985).

  50. 50.

    G. F. Renaud, C. D. Desmulle, H. Schmid-Antomarchi, et al., “Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy,” Nature,319, No. 6095, 678–690 (1986).

  51. 51.

    G. Romey, M. Hugues, H. Schmid-Antomarchi, and M. Lazdunski, “Apamin: a specific toxin to study a class of Ca2+-dependent K+ channels,” J. Physiol.,79, No. 1, 259–264 (1984).

  52. 52.

    H. Schmid-Antomarchi, G. F. Renaud, G. Romay et al., “The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle,” Proc. Natl. Acad. Sci., USA,82, No. 7, 2188–2191 (1985).

  53. 53.

    M. J. Seagar, C. Granier, and F. Courand, “Interactions of the neurotoxin apamin with a Ca2+-activated K+ channel in primary neuronal cultures,” J. Biol. Chem.,259, No. 3, 1491–1495 (1984).

  54. 54.

    M. F. Shuba and I. A. Vladimirova, “Effect of apamin on the electrical responses of smooth muscle to ATP and to non-adrenergic, non-cholinergic nerve stimulation,” Neuroscience,5, No. 1, 853–859 (1980).

  55. 55.

    M. F. Shuba and I. A. Vladimirova, Action of Apamin on Nerve-Muscle Transmission and the Effects of ATP and Noradrenaline in Smooth Muscle, Academic Press, Budapest (1981).

  56. 56.

    T. G. Smart, “Single Ca2+-activated K+ channels recorded from cultured rat sympathetic neurones,” J. Physiol.,389, 337–360 (1987).

Download references

Additional information

A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 833–846, November–December, 1988.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baidan, L.V., Zholos, A.V. Apamin: A highly selective and effective blocker of calcium-dependent potassium conductance. Neurophysiology 20, 590–600 (1988). https://doi.org/10.1007/BF02150264

Download citation

Keywords

  • Potassium
  • Potassium Conductance
  • Effective Blocker