Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Simulation der winterlichen Nitratverlagerung in Böden

Summary

A simple method for the simulation of transport of non-adsorbed ions during winter like nitrate is described. The physical model assumes that the soil water movement around the moving nitrate peak is always nearly (quasi-)stationary. This means that only the one-dimensional convective—dispersive linear differential equation for the ion movement has to be solved. Field capacity values of the soils and periodically averaged precipitation data are used to determine pore-water velocity. Diffusion and hydrodynamic dispersion data are taken from the literature. For the numerical solution a programmable table (micro-)computer could be used. Numerical dispersion is considered in a simple way. Simulated nitratevs depth distributions compare reasonably well with the measured nitrate profiles.

This is a preview of subscription content, log in to check access.

Literatur

  1. 1

    Chaudhari, N. M., An improved numerical technique for solving multidimensional miscible displacement equations. Soc. Pet. Eng. J.11, 277–284 (1971).

  2. 2

    D'Ans-Lax, Taschenbuch für Chemiker und Physiker, Band1, 1442 (1967).

  3. 3

    Ferrari, Th. J. and Cuperus, J. L., Dynamic simulation of vertical non-adsorbed anion transport. Plant and Soil38, 425–438 (1973).

  4. 4

    Fischer, K., Numerical model for density currents in estuaries. Proc. 15th Coastal Eng. Conf., Honolulu (1976).

  5. 5

    Fox, R. L., Kacar, B., Aydeniz, A. and Zabuosglu, S., Nitrate accumulation, distribution and utilization during fallow-wheat culture in turkish soils. Soil Sci.109, 60–65 (1970).

  6. 6

    Frissel, M. J., Poelstra, P. and Reiniger, P., Chromatographic transport through soils III. A simulation model for the evaluation of the apparent diffusion coefficient in undisturbed soils with tritiated water. Plant and Soil33, 161–176 (1970).

  7. 7

    Gliemeroth, G., Stickstoffverlagerung über Winter auf einem Lößlehm in Abhängigkeit von Form, Menge, Termin und Verteilung der Herbstdüngung. Z. Pflanzenernaehr. Dueng. Bodenkd.85, 20–31 (1959).

  8. 8

    Kirda, C., Nielsen, D. R. and Biggar, J. W., Simultaneous transport of chloride and water during infiltration. Soil Sci. Soc. Am. Proc.37, 339–345 (1973).

  9. 9

    Levin, L., Movement of added nitrates through soil columns and undisturbed soil profiles. Trans. 8th Intern. Congr. of Soil Sci. BucharestIV, 1011–1022 (1964).

  10. 10

    Scharpf, H. C. und Wehrmann, J., Die Bedeutung des Mineralstickstoffvorrates des Bodens für die Bemessung der N-Düngung zu Winterweizen. Landwirtsch. Forsch. So. He.32/I, 100–114 (1975).

  11. 11

    Scharpf, H. C., Der Mineralstickstoffgehalt des Bodens als Maßstab für den Stickstoffdüngerbedarf. Dissertation, Hannover (1977).

  12. 12

    Van Genuchten, M. Th. and Wierenga, P. J., Simulation of one-dimensional solute transfer in porous media. N. Mex. Agr. Exp. Sta. Bull.628 (1974).

  13. 13

    Von Wistinghausen, E., Die Verlagerung von Nitrat- und anderen Ionen in Böden und die Wirkung der Bewirtschaftung auf diesen Vorgang. Dissertation, Hohenheim (1971).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richter, J., Scharpf, H.C. & Wehrmann, J. Simulation der winterlichen Nitratverlagerung in Böden. Plant Soil 49, 381–393 (1978). https://doi.org/10.1007/BF02149746

Download citation