Advertisement

Foundations of Physics

, Volume 26, Issue 7, pp 929–942 | Cite as

Mach-Einstein doctrine and general relativity

  • H. -H. von Borzeszkowski
  • H. -J. Treder
Part IV. Invited Papers Dedicated to Max Jammer

Abstract

It is argued that, under the assumption that the strong principle of equivalence holds, the theoretical realization of the Mach principle (in the version of the Mach-Einstein doctrine) and of the principle of general relativity are alternative programs. That means only the former or the latter can be realized—at least as long as only field equations of second order are considered. To demonstrate this we discuss two sufficiently wide classes of theories (Einstein-Grossmann and Einstein-Mayer theories, respectively) both embracing Einstein's theory of general relativity (GRT). GRT is shown to be just that “degenerate case” of the two classes which satisfies the principle of general relativity but not the Mach-Einstein doctrine; in all the other cases one finds an opposite situation.

These considerations lead to an interesting “complementarity” between general relativity and Mach-Einstein doctine. In GRT, via Einstein's equations, the covariant and Lorentz-invariant Riemann-Einstein structure of the space-time defines the dynamics of matter: The symmetric matter tensor Ttk is given by variation of the Lorentz-invariant scalar densityLmat, and the dynamical equations satisfied by Tik result as a consequence of the Bianchi identities valid for the left-hand side of Einstein's equations. Otherwise, in all other cases, i.e., for the “Mach-Einstein theories” here under consideration, the matter determines the coordinate or reference systems via gravity. In Einstein-Grossmann theories using a holonomic representation of the space-time structure, the coordinates are determined up to affine (i.e. linear) transformations, and in Einstein-Mayer theories based on an anholonomic representation the reference systems (the tetrads) are specified up to global Lorentz transformations. The corresponding conditions on the coordinate and reference systems result from the postulate that the gravitational field is compatible with the strong equivalence of inertial and gravitational masses.

Keywords

General Relativity Reference System Gravitational Field Lorentz Transformation Symmetric Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Collected Papers of Albert Einstein, Vol.4, “The Swiss Years: Writings 1912–1914,” M. J. Klein, A. J. Kox, J. Renn, and R. Schulmann, eds. (Princeton University Press, 1995).Google Scholar
  2. 2.
    The Collected Papers of Albert Einstein, Vol. 5, “Correspondence 1902–1914,” M. J. Klein, A. J. Kox, and R. Schulmann, eds. (Princeton University Press, 1993).Google Scholar
  3. 3.
    A. Einstein and M. Grossmann,Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Teubner, Leipzig, 1913): cf. alsoCP 4, No. 13.12 Google Scholar
  4. 4.
    A. Einstein,Phys. Z. XIV, 1249 (1913); cf. alsoCP 4, No. 17.Google Scholar
  5. 5.
    A. Einstein,Phys. Z. XV, 174 (1913); cf. alsoCP 4, No. 25.Google Scholar
  6. 6.
    A. Einstein, “Bemerkungen”. Appendix to the reprint of the paper here cited as Ref. 3 in:Z. Math. Phys. 62, 260 (1914); cf. alsoCP 4, No. 26.Google Scholar
  7. 7.
    A. Einstein,Scientia 15, 328 (1914); cf. alsoCP 4, No. 31.Google Scholar
  8. 8.
    A. Einstein, “Formale Grundlage der allgemeinen Relativitätstheorie,”Berliner Ber. 1914, p. 1030.Google Scholar
  9. 9.
    Mach's Principle: From Newton's Bucket to Quantum Gravity, J. Barbour and H. Pfister, eds. (Birkhäuser, Boston, 1995).Google Scholar
  10. 10.
    H.-J. Treder, H.-H. von Borzeszkowski, A. van der Merwe, and W. Yourgrau,Fundamental Principles of General Relativity Theories. Local and Global Aspects of Gravitation and Cosmology (Plenum, New York, 1980).Google Scholar
  11. 11.
    A. Ashtekar,New Perspectives in Canonical Gravity (Bibliopolis, Naples, 1988). (See, in particular, L. Bombelli's contribution “Lagrange Formulation,” pp. 77–91.)Google Scholar
  12. 12.
    A. Ashtekar,Non-perturbative Canonical Gravity (World Scientific, Singapore, 1991).Google Scholar
  13. 13.
    H.-H. v. Borzeszkowski and H.-J. Treder,Gen. Relativ. Gravit. 25, 291 (1992).Google Scholar
  14. 14.
    M. Fierz,Helv. Phys. Acta XII, 3 (1939); W. Pauli and M. Fierz,Helv. Phys. Acta XII, 297 (1939).Google Scholar
  15. 15.
    A. Einstein,Phys. Z. XIV, 1249 (1913).Google Scholar
  16. 16.
    A. Einstein, “Zur allgemeinen Relativitätstheorie (mit Nachtrag),”Berliner Ber. 1915, pp. 778 and 799.Google Scholar
  17. 17.
    D. Hilbert, “Grundlage der Physik. 1. Mitteilung,”Göttinger Ber. 1915, p. 395;Gesammelte Abhandlungen (Collected Papers) III, No. 16.Google Scholar
  18. 18.
    A. Einstein, “Hamiltonsches Prinzip und allgemeine Relativitätstheorie,”Berliner Ber. 1916, p. 111.Google Scholar
  19. 19.
    A. Einstein,Berliner Ber. 1918, p. 488.Google Scholar
  20. 20.
    A. Einstein, “Riemann-Geometrie und Aufrechterhaltung des Begriffs des Fernparallelismus,”Berliner Ber. 1928, p. 219.Google Scholar
  21. 21.
    A. Einstein, “Einheitliche Feldtheorie und Hamiltonsches Prinzip,”Berliner Ber. 1929, p. 124.Google Scholar
  22. 22.
    A. Einstein and W. Mayer, “Systematische Untersuchung über kompatible Feldgleichungen, welche von einem Riemannschen Raum mit Fernparallelismus gesetzt werden können,”Berliner Ber. 1931, p. 3.Google Scholar
  23. 23.
    E. Noether, “Invarianten beliebiger Differentialausdrücke,”Göttinger Ber. 1918, p. 37.Google Scholar
  24. 24.
    F. Klein, “Über die Differentialgesetze von Impuls und Energie in der Einsteinschen Gravitationstheorie,”Göttinger Ber. 1918, p. 235.Google Scholar
  25. 25.
    R. Weitzenböck, “Differentialinvarianten in der Einsteinschen Theorie des Fernparallelismus,”Berliner Ber. 1928, p. 466.Google Scholar
  26. 26.
    C. Møller,Math.-Fys. Skr. Dan. Vid. Selskab 1, No. 10 (1961).Google Scholar
  27. 27.
    C. Møller, “Survey of Investigations on the Energy-Momentum Complex in General Relativity,” inEntstehung, Entwicklung und Perspektiven der Einsteinschen Gravitationsheorie, H.-J. Treder, ed. (Akademie-Verlag, Berlin, 1966).Google Scholar
  28. 28.
    A. Einstein, “Neue Möglichkeit für eine einheitliche Feldtheorie von Gravitation und Elektrizität,”Berliner Ber. 1928, p. 224.Google Scholar
  29. 29.
    A. Einstein, “Zur einheitlichen Feldtheorie,”Berliner Ber. 1929, p. 2.Google Scholar
  30. 30.
    H.-J. Treder,Ann. Phys. (Leipzig) 35, 371 (1978).Google Scholar
  31. 31.
    C. Pellegrini and J. Plebanski, “Tetrad fields and gravitational fields,”Mat.-fys. Skr. Dan. Vid. Selskab 2, No. 4 (1963).Google Scholar
  32. 32.
    F. W. Hehl,Found. Phys. 15, 451 (1985); F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne'eman, “Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance,”Phys. Rep. 258, 1–171 (1995); cf. also the literature cited therein.Google Scholar
  33. 33.
    L. Infeld and J. Plebanski,Motion and Relativity (Pergamon, Oxford, 1960).Google Scholar
  34. 34.
    E. Schrödinger,Phys. Z. 19, 4 (1918).Google Scholar
  35. 35.
    A. Einstein,Phys. Z. 19, 115 (1918).Google Scholar
  36. 36.
    H. Bauer,Phys. Z. 19, 163 (1918).Google Scholar
  37. 37.
    H. von Freud,Ann. Math. Princeton 40, 417 (1939).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • H. -H. von Borzeszkowski
    • 1
  • H. -J. Treder
    • 2
  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany
  2. 2.PotsdamGermany

Personalised recommendations