Foundations of Physics

, Volume 24, Issue 9, pp 1305–1327

A unified conformal model for fundamental interactions without dynamical Higgs field

  • Marek Pawłowski
  • Ryszard Raczka
Part II. Invited Papers Dedicated to Constantin Piron

Abstract

A Higgsless model for strong, electroweak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)×SU(2)L×U(1)×C,where C is the local conformal symmetry group. The natural minimal conformally invariant form of total Lagrangian is postulated. It contains all standard model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions, we can eliminate all four real components of the Higgs doublet in this model. However, the masses of vector mesons, leptons, and quarks are automatically generated and are given by the same formulas as in the conventional standard model. In this manner one gets the mass generation without the mechanism of spontaneous symmetry breaking and without the remaining real dynamical Higgs field. The gravitational sector is analyzed, and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CDF Collaboration, FERMILAB-PUB-94/116-E.Google Scholar
  2. 2.
    Z. Hioki and R. Najima, “Is the standard eletroweak theory happy withm,∼ 174 GeV?,” preprint TOCUSHIMA 94-02, YCCP-9404.Google Scholar
  3. 3.
    OPAL Collaboration and K. Ahmet,Phys. Lett. B 251, 211 (1990); ALEPH Collaboration, D. Decampet al., Phys. Lett. B 245, 289; (1990) DELPHI Collaboration, P. Abreuet al., Z. Phys. C 51, 25 (1991).CrossRefGoogle Scholar
  4. 4.
    G. Altarelli, R. Barbieri, and F. Caravaglios,Nucl. Phys. B 405, 3 (1993).CrossRefGoogle Scholar
  5. 5.
    M. Pawlowski and R. Raczka, “Mass generation in the standard model without dynamical Higgs field,”Bull. Board: hep-ph 9403303.Google Scholar
  6. 6.
    J. Ellis, G. L. Fogli, E. Lisi,Phys. Lett. B 318, 148 (1993).CrossRefGoogle Scholar
  7. 7.
    G. Montagnaet al., “The top quark and the Higgs boson mass from LEP SLC and CDF Data,”Bull. Board: hep-ph 9407246.Google Scholar
  8. 8.
    J. Ellis, G. L. Fogli, and E. Lisi, CERN-TH.7261/94 and BARI-TH/177-94.Google Scholar
  9. 8.
    G. Altarelli, R. Barbieri, and S. Jadach,Nucl. Phys. B 309, 3 (1992).CrossRefGoogle Scholar
  10. 10.
    B. A. Kniehl, “High order corrections to Higgs-boson decays,”Bull. Board: hep-ph 9405317.Google Scholar
  11. 11.
    S. Dittmaier, C. Grosse-Knetter, and D. Schildknecht, “On the Role of the Higgs Mechanism in Present Electroweak Precision Tests,”Bull. Board: hep-th 9406378.Google Scholar
  12. 12.
    D. Caerupeel and M. Leblanc, “Mass Generation for Gauge Fields without Scalars”Bull. Board: hep-ph 9407029.Google Scholar
  13. 13.
    M. J. Herrero and E. R. Morales,Nucl. Phys. B 418, 341 (1994).CrossRefGoogle Scholar
  14. 14.
    U. Canutoet al., Phys. Rev. D 16, 1643 (1977).CrossRefGoogle Scholar
  15. 15.
    N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).Google Scholar
  16. 16.
    R. M. Wald,General Relativity (The University of Chicago Press, Chicago 1984).Google Scholar
  17. 17.
    M. A. Castagnino and J. B. Sztrajman,J. Math. Phys. 27, 1037 (1986).CrossRefGoogle Scholar
  18. 18.
    R. Penrose,Ann. Phys. 10, 171 (1960).CrossRefGoogle Scholar
  19. 19.
    K. S. Stelle,Phys. Rev. D 16, 953 (1977).CrossRefGoogle Scholar
  20. 20.
    See, e.g., S. Deser and P. von Niewenhuizen,Phys. Rev. D 10, 401 (1974).CrossRefGoogle Scholar
  21. 21.
    J. V. Narlikar,Introduction to Cosmology (Jones & Bartlet, 1983).Google Scholar
  22. 22.
    D. M. Capper, G. Leibbrandt, and M. R. Medrano,Phys. Rev. D 8 (1973) 4320.CrossRefGoogle Scholar
  23. 23.
    See e.g.(i)M. Veltman,Nucl. Phys. B 7, 637 (1968),CrossRefGoogle Scholar
  24. 23(ii).
    D. G. Boulware,Ann. Phys. 56, 140 (1970).CrossRefGoogle Scholar
  25. 23(iii).
    J. C. Taylor,Gauge Theories of Weak Interactions (Cambridge University Press, Cambridge 1976), chap. 2.Google Scholar
  26. 24.
    C. Grosse-Knetter, The equivalence theorem for heavy-Higgs standard model and the gauged nonlinearσ-Model,Bull. Board: hap-ph 9405412.Google Scholar
  27. 25.
    A. Kniehl,Phys. Rep. 240, 211 (1994).CrossRefGoogle Scholar
  28. 26.
    S. Dittmaieret al., “On the significance of the electroweak precision data,” BI-TP 94/03.Google Scholar
  29. 27.
    Ya. B. Zel'dovich,Pis'ma Zh. Exp. Teor. Fiz. 6, 883 (1967) [JETP Lett. 6, 316 (1967)].Google Scholar
  30. 28.
    A. D. Sakharov,Dok. Akad. Nauk SSSR 177, 70 (1967) [Sov. Phys. Dokl. 12, 1040 (1968)].Google Scholar
  31. 29.
    S. L. Adler,Rev. Mod. Phys. 54, 729 (1982).CrossRefGoogle Scholar
  32. 30.
    S. D. Buchbinder, S. D. Odintsov, and I. L. Shapiro,Effective Action in Quantum Gravity (IOP, Bristol, 1992).Google Scholar
  33. 31.
    S. D. Odintsov and I. L. Shapiro,Class. Quantum Gravit. 9, 873 (1992).CrossRefGoogle Scholar
  34. 32(i).
    R. Mańka and J. Syska, Boson Condensation in the GSW Electroweak Theory, preprint University of Silesian 1993 (to be published inPhys. Rev. D).Google Scholar
  35. 32(ii).
    G. Pocsik, E. Lendvai, and G. Cynolter,Acta Phys. Pol. B 24, 1495 (1993); see also G. Cynolter, E. Lendvai, and G. Pocsik,ρ-parameter in the vector condensate model of electroweak interactions,” preprint, Institute of Theoretical Physics, Eotvos Lorad University, Budapest.Google Scholar
  36. 33.
    See, e.g., L. N. LipatovSov. Phys. JETP 90, 1536 (1986);R. Kirschner, L. N. Lipatov, and L. Szymanowski,Nucl. Phys. B (Proc. Suppl.) 29A, 84 (1992); L. N. Lipatov,ibid., p. 89; V. S. Fadin and L. N. Lipatov,ibid., p. 93 and references therein.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Marek Pawłowski
    • 1
  • Ryszard Raczka
    • 1
    • 2
  1. 1.Soltan Institute for Nuclear StudiesWarsawPoland
  2. 2.Interdisciplinary Laboratory for Natural and Humanistic SciencesInternational School for Advanced Studies (SISSA)TriesteItaly

Personalised recommendations