Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Strontium ferrates(IV): transition metal oxides at the insulator-metal borderline

  • 153 Accesses

  • 9 Citations

Abstract

Oxoferrates with iron in the high formal oxidation state of 4+ show a variety of electronic properties including insulating behavior, metallic conductivity, and a valence disproportionation of Fe4+. Here, we report investigations of Sr2FeO4 which crystallizes in the two-dimensional K2NiF4-type structure. From resistivity and magnetic susceptibility measurements it is found that Sr2FeO4 is an antiferromagnetic semiconductor with a Néel temperatureT N of about 60 K. The Mössbauer spectra of the paramagnetic phase of Sr2FeO4 reveal a single Fe4+ quadrupole doublet. Those of the ordered phase consist of a complicated magnetic hyperfine pattern with at least four inequivalent Fe4+ sites. These may arise from structural distortions and/or from a complicated spin structure. External pressures above 6 GPa lead to an increase in near-infrared oscillator strength indicating a gap-narrowing and possibly an insulatormetal transition. Raman spectra between 20 and 300 K show, in addition to the normal Raman-active phonon modes of the K2NiF4-type crystal structure, a further oxygen-derived phonon mode. The additional Raman band vanishes near 5.5 GPa. The electronic behavior of strontium ferrates(TV) is discussed within the general systematics for the electronic structure of transition metal compounds.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    J.H. de Boer and E.J.W. Verwey, Proc. Phys. Soc. 49 (1937) 59.

  2. [2]

    N.F. Mott, in:Metal-Insulator Transitions (Taylor and Francis, London, 1974).

  3. [3]

    J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett.55 (1985) 418.

  4. [4]

    P.A. Cox, in:Transition Metal Oxides (Clarendon Press, Oxford, 1992).

  5. [5]

    J.B. MacChesney, R.C. Sherwood and J.F. Potter, J. Chem. Phys. 43 (1965) 1907.

  6. [6]

    P.K. Gallagher, J.B. MacChesney and D.N.E. Buchanan, J. Chem. Phys. 41 (1964) 2429.

  7. [7]

    Y. Takeda, S. Naka, M. Takano, T. Shinjo, T. Takada and M. Shimada, Mater. Res. Bull. 13 (1978) 61.

  8. [8]

    M. Takano, N. Nakanishi, Y. Takeda, S. Naka and T. Takada, Mater. Res. Bull. 12 (1977) 923.

  9. [9]

    M. Takano and Y. Takeda, Bull. Inst. Chem. Res. Kyoto Univ. 61 (1983) 406.

  10. [10]

    S.E. Dann, M.T. Weller and D.B. Currie, J. Solid State Chem. 92 (1991) 237.

  11. [11]

    S.E. Dann, M.T. Weller and D.B. Currie, J. Solid State Chem. 97 (1992) 179.

  12. [12]

    P. Adler, in:Book of Abstracts, IVth European Conference on Solid State Chemistry, Dresden (1992) p. 69.

  13. [13]

    P. Adler, J. Solid State Chem. 108 (1994) 275.

  14. [14]

    P. Adler, A.F. Goncharov and K. Syassen, Phys. Rev. B 50 (1994) 11396.

  15. [15]

    S.E. Dann, M.T. Weller, D.B. Currie, M.F. Thomas and A.D. Al-Rawwas, J. Mater. Chem. 3 (1993) 1231.

  16. [16]

    Y. Takeda, K. Imayoshi, N. Imanishi, O. Yamamoto and M. Takano, J. Mater. Chem. 4 (1994) 19.

  17. [17]

    F.J. Morin, Phys. Rev. 78 (1950) 819.

  18. [18]

    G. Demazeau, N. Chevreau, L. Fournes, J.-L. Soubeyroux, Y. Takeda, M. Thomas and M. Pouchard, Rev. Chim. Miner. 20 (1983) 155.

  19. [19]

    T. Takeda, Y. Yamaguchi and H. Watanabe, J. Phys. Soc. Jpn. 33 (1972) 967.

  20. [20]

    H. Oda, Y. Yamaguchi, H. Takei and H. Watanabe, J. Phys. Soc. Jpn. 42 (1977) 101.

  21. [21]

    U. Venkateswaran, K. Strössner, K. Syassen, G. Burns and M.W. Shafer, Solid State Commun. 64 (1987) 1273.

  22. [22]

    G. Güntherodt and R. Zeyer, in:Topics in Applied Physics, Vol. 54 (Springer, Berlin, 1984).

  23. [23]

    G. Güntherordt and R. Merlin, in:Topics in Applied Physics, Vol. 54 (Springer, Berlin, 1984).

  24. [24]

    T. Ruf, P. Adler and K. Syassen, unpublished.

  25. [25]

    J. Zaanen and G.A. Sawatzky, J. Solid State Chem. 88 (1990) 8.

  26. [26]

    A.E. Bocquet, T. Mizokawa, T. Saitoh, H. Namatame and A. Fujimori, Phys. Rev. B 46 (1992) 3771.

  27. [27]

    A. Fujimori, J. Phys. Chem. Solids 53 (1992) 1595.

  28. [28]

    A.E. Bocquet, A. Fujimori, T. Mizokawa, T. Saitoh, H. Namatame, S. Suga, N. Kimizuka, Y. Takeda and M. Takano, Phys. Rev. B 45 (1992) 1561.

  29. [29]

    T. Mizokawa, H. Namatame, A. Fujimori, K. Akeyama, H. Kondoh, H. Kuroda and N. Kosugi, Phys. Rev. Lett. 67 (1991) 1638.

  30. [30]

    H. Eskes and G.A. Sawatzky, Phys. Rev. Lett. 61 (1988) 1415.

Download references

Author information

Additional information

On leave from: Institute of Crystallography, Russian Academy of Science, Moscow, Russia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adler, P., Goncharov, A.F. & Syassen, K. Strontium ferrates(IV): transition metal oxides at the insulator-metal borderline. Hyperfine Interact 95, 71–84 (1995). https://doi.org/10.1007/BF02146306

Download citation

Keywords

  • Magnetic Susceptibility
  • Disproportionation
  • Phonon Mode
  • Transition Metal Oxide
  • Magnetic Susceptibility Measurement