, Volume 23, Issue 8, pp 686–690 | Cite as

The mechanism of the lead tetraacetate oxidation of a B-norsteroid

  • David Rosenthal
Specialia Disputandum


Für die Bildung neuartiger Oxydationsprodukte, die bei der Reaktion eines B-Norsteroidalkohols mit Blei-tetraacetat entstehen, werden zwei Mechanismen vorgeschlagen: Die bekannte Spaltungs-Additions-Reaktion eines Alkoxy Radikals und die bisher unbekannte Umlagerung eines Alkyl-tertiäralkoxy Radikals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Rosenthal, C. F. Lefler andM. E. Wall, Tetrahedron Lett. 3203 (1965); Tetrahedron23, in press (1967).Google Scholar
  2. 2.
    R. Criegee, inNewer Methods of Preparative Organic Chemistry (Academic Press, New York 1963), vol. II, p. 36.Google Scholar
  3. 3.
    The isolation of lead hydroxy methoxy diacetate from methanol and lead tetraacetate has been reported byR. Criegee, L. Kraft andB. Rank, Justus Liebigs Annln Chem.507, 199 (1933).Google Scholar
  4. 4.
    M. Lj. Mihailović, Z. Maksimović, D. Jeremić, Ž. Čeković, A. Milovanović andLj. Lorenc, Tetrahedron21, 1395 (1965).CrossRefGoogle Scholar
  5. 5.
    K. Heusler andJ. Kalvoda, Angew. Chem., Int. Edn3, 525 (1964);G. Cainelli, B. Kamber, J. Keller, M. Lj. Mihailović, D. Arigoni andO. Jeger, Helv. chim. Acta44, 518 (1961).Google Scholar
  6. 7.
    This assumption is supported by the fact that when the alcohol I was irradiated at room temperature in benzene solution in the presence of lead tetraacetate, the enol ether II was formed. The reason that very little III was isolated can be explained by the fact that in the photolysis reaction the concentration of both reactants was very low. Since the reaction proceeds both thermally and photolytically, it is implied that alkoxy radicals rather than alkoxy cations are intermediates (J. Kalvoda andK. Heusler, Chemy Ind. 1431, 1963).Google Scholar
  7. 8.
    G. Cainelli, B. Kamber, J. Keller, M. Lj. Mihailović, D. Arigoni andO. Jeger, Helv. chim. Acta44, 518 (1961);F. D. Greene, M. L. Savitz, F. D. Osterholtz, H. H. Lau, W. N. Smith andP. M. Zanet, J. org. Chem.28, 55 (1963).CrossRefGoogle Scholar
  8. 9.
    K. Heusler, J. Kalvoda, G. Anner andA. Wettstein, Helv. chim. Acta46, 352 (1963).CrossRefGoogle Scholar
  9. 10.
    H. Wieland, Ber. dt. chem. Ges.44, 2550 (1911);M. S. Kharasch, A. C. Poshkus, A. Fono andW. Nudenberg, J. org. Chem.16, 1458 (1951).Google Scholar
  10. 12.
    B. M. Lynch andK. H. Pausacker, Aust. J. Chem.10, 40 (1957);D. R. Augood andG. H. Williams, Chem. Rev.57, 123 (1957)Google Scholar
  11. 13.
    J. D. Bacha andJ. K. Kochi, J. org. Chem.30, 3272 (1965);C. Walling andA. Padwa, J. Am. chem. Soc.85, 1593 (1963).Google Scholar
  12. 14.
    Electronic factors are not the sole determinants of the mode of cleavage. In certain strained cyclobutanol systems, the normal direction of cleavage is reversed and primary groups are extruded in preference to secondary groups.M. Amorosa, L. Caglioti, G. Cainelli, H. Immer, J. Keller, H. Wehrli, M. Lj. Mihailović, K. Schaffner, D. Arigoni andO. Jerger, Helv. chim. Acta.45, 2674 (1962);J. Fried andJ. W. Brown, Tetrahedron Lett. 1677 (1966).CrossRefGoogle Scholar
  13. 15.
    F. F. Rust, F. H. Seubold andW. E. Vaughan, J. Am. chem. Soc.70, 3258 (1948).Google Scholar
  14. 16.
    C. D. Cook, R. C. Woodworth andP. Fianu, J. Am. chem. Soc.78, 4159 (1956).CrossRefGoogle Scholar
  15. 17.
    W. H. Starnes, Jr. andN. P. Neureiter, J. org. Chem.32, 333 (1967).CrossRefGoogle Scholar
  16. 18.
    E. W. R. Steacie,Atomic and Free Radical Reactions (Reinhold Publishing Corp., New York 1954), Chaps. IV and V.Google Scholar
  17. 19.
    F. D. Greene, C.-C. Chu, andJ. Walia, J. org. Chem.29, 1285 (1964);P. S. Skell andP. D. Readio, J. Am. chem. Soc.86, 3334 (1964).Google Scholar
  18. 20.
    Compound II was shown independently to be involved in an alternate ionization to form an allylic carbonium ion with very different solvolysis products. The distinction between the cations derived fromβ alkoxy allylic alcohols by the protonation of theα carbon atom and the ion obtained by protonation of the hydroxyl group has been made previously.E. Wenkert andD. P. Strike, J. Am. chem. Soc.86, 2044 (1964).CrossRefGoogle Scholar
  19. 21.
    C. Walling, inMolecular Rearrangements (Ed.P. de Mayo; Interscience, New York 1963), p. 418.Google Scholar
  20. 22.
    M. Lj. Mihailović, Lj. Lorenc, M. Gašić, M. Rogić, A. Melera andM. Stefanović, Tetrahedron22, 2345 (1966).CrossRefGoogle Scholar
  21. 23.
    M. Akhtar andS. March, J. chem. Soc. c, 937 (1966).Google Scholar
  22. 24.
    R. Criegee andH. Zogel, Ber. dt. chem. Ges.84, 215 (1951).Google Scholar
  23. 25.
    R. Criegee andW. Schnorrenberg, Justus Liebigs Annln Chem.560, 141 (1948).Google Scholar

Copyright information

© Birkhäuser Verlag 1967

Authors and Affiliations

  • David Rosenthal
    • 1
  1. 1.Research Triangle InstituteResearch Triangle ParkUSA

Personalised recommendations