Journal of Molecular Evolution

, Volume 28, Issue 1–2, pp 87–97 | Cite as

Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence

  • Jeffrey D. Palmer
  • Laura A. Herbon


We examined the tempo and mode of mitochondrial DNA (mtDNA) evolution in six species of crucifers from two genera,Brassica andRaphanus. The six mtDNAs have undergone numerous internal rearrangements and therefore differ dramatically with respect to the sizes of their subgenomic circular chromosomes. Between 3 and 14 inversions must be postulated to account for the structural differences found between any two species. In contrast, these mtDNAs are extremely similar in primary sequence, differing at only 1–8 out of every 1000 bp. The point mutation rate in these plant mtDNAs is roughly 4 times slower than in land plant chloroplast DNA (cpDNA) and 100 times slower than in animal mtDNA. Conversely, the rate of rearrangements is extraordinarily faster in plant mtDNA than in cpDNA and animal mtDNA.

Key words

Genome evolution Rearrangement Inversion Brassica Base substitution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey-Serres J, Hanson DK, Fox TD, Leaver CJ (1986) Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene inSorghum. Cell 47:567–576Google Scholar
  2. Bland MM, Matzinger DF, Levings CS III (1985) Comparison of the mitochondrial genome ofNicotiana tabacum with its progenitor species. Theor Appl Genet 69:535–541Google Scholar
  3. Bland MM, Levings CS III, Matzinger DF (1986) The tobacco mitochondrial ATPase subunit 9 gene is closely linked to an open reading frame for a ribosomal protein. Mol Gen Genet 204:8–16Google Scholar
  4. Broach JR (1982) The yeast plasmid 2 micron circle. Cell 28:203–204Google Scholar
  5. Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland MA, pp 62–88Google Scholar
  6. Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics. Plenum, New York, pp 95–130Google Scholar
  7. Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971Google Scholar
  8. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239Google Scholar
  9. Chetrit P, Mathieu C, Muller JP, Vedel F (1984) Physical and gene mapping of cauliflower (Brassica oleracea) mitochondrial DNA. Curr Genet 8:413–421Google Scholar
  10. Clayton DA (1984) Transcription of the animal mitochondrial genome. Annu Rev Biochem 53:573–594Google Scholar
  11. Dewey RE, Levings CS III, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44:439–449Google Scholar
  12. Gray J (1986) Wonders of chloroplast DNA. Nature 322:501–502Google Scholar
  13. Kolodner R, Tewari KK (1972) Physicochemical characterization of mitochondrial DNA from pea leaves. Proc Natl Acad Sci USA 69:1830–1834Google Scholar
  14. Lebacq P, Vedel F (1981) Sal I restriction enzyme analysis of chloroplast and mitochondrial DNAs in the genusBrassica. Plant Sci Lett 23:1–9Google Scholar
  15. Lonsdale DM (1988) The plant mitochondrial genome. In: Davies DD (ed) The biochemistry of plants, vol. II, biochemistry of metabolism. Academic Press, Orlando FL (In press)Google Scholar
  16. Makaroff CA, Plamer JD (1987) Extensive mitochondrial-specific transcription of theBrassica campestris mitochondrial genome. Nucleic Acids Res 15:5141–5156Google Scholar
  17. Makaroff CA, Palmer JD (1988) Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol 8:1474–1480Google Scholar
  18. McClean PE, Hanson MR (1986) Mitochondrial DNA sequence divergence amongLycopersicon and relatedSolanum species. Genetics 112:649–667Google Scholar
  19. Moritz C, Brown WM (1987) Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci USA 84:7183–7187Google Scholar
  20. Palmer JD (1985a) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: MacIntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics. Plenum, New York, pp 131–240Google Scholar
  21. Palmer JD (1985b) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–345Google Scholar
  22. Palmer JD (1986) Isolation and structural analysis of chloroplast DNA. Methods Enzymol 118:167–186Google Scholar
  23. Palmer JD (1988) Intraspecific variation and multicircularity inBrassica mitochondrial DNAs. Genetics 118:341–351.Google Scholar
  24. Palmer JD, Herbon LA (1986) Tripartite mitochondrial genomes ofBrassica andRaphanus: reversal of repeat configurations by inversion. Nucleic Acids Res 14:9755–9765Google Scholar
  25. Palmer JD, Herbon LA (1987) Unicircular structure of theBrassica hirta mitochondrial genome. Curr Genet 11:565–570Google Scholar
  26. Palmer JD, Shields CR (1984) Tripartite structure of theBrassica campestris mitochondrial genome. Nature 307:437–440Google Scholar
  27. Palmer JD, Shields CR, Cohen DB, Orton TJ (1983a) Chloroplast DNA evolution and the origin of amphidiploidBrassica species. Theor Appl Genet 65:181–189Google Scholar
  28. Palmer JD, Shields CR, Cohen DB, Orton TJ (1983b) An unusual mitochondrial DNA plasmid in the genusBrassica. Nature 301:725–728Google Scholar
  29. Pring DR, Lonsdale DM (1985) Molecular biology of higher plant mitochondrial DNA. Int Rev Cytol 97:1–46Google Scholar
  30. Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell 43:361–368Google Scholar
  31. Sederoff RR (1987) Molecular mechanisms of mitochondrialgenome evolution in higher plants. Am Nat 130:S30-S45Google Scholar
  32. Sederoff RR, Levings CS III, Timothy DH, Hu WWL (1981) Evolution of DNA sequence organization in mitochondrial genomes ofZea. Proc Natl Acad Sci USA 78:5953–5957Google Scholar
  33. Siculella L, Palmer JC (1988) Physical and gene organization of mitochondrial DNA in fertile and male sterile sunflower: CMS-associated alterations in structure and transcription of theatpA gene. Nucleic Acids Res 16:3787–3799Google Scholar
  34. Stern DB, Palmer JD (1984) Recombination sequences in plant mitochondrial genomes: diversity and homologies to known mitochondrial genes. Nucleic Acids Res 12:6141–6157Google Scholar
  35. Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803Google Scholar
  36. Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400Google Scholar
  37. Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058Google Scholar
  38. Young EG, Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50:41–49Google Scholar
  39. Zurawski G, Clegg MT (1987) Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol 38: 391–418Google Scholar
  40. Zurawski G, Clegg MT, Brown AHD (1984) The nature of nucleotide sequence divergence between barley and maize chloroplast DNA. Genetics 106:735–749Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Jeffrey D. Palmer
    • 1
  • Laura A. Herbon
    • 1
  1. 1.Department of BiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations