, Volume 51, Issue 5, pp 482–497 | Cite as

Population genetic structure and mating system evolution in freshwater pulmonates

  • P. Jarne
  • T. Städler
Multi-Author Reviews Population Biology of Freshwater Invertebrates


Freshwater gastropods (Basommatophora and Prosobranchia) harbor a variety of mating systems. In particular, apomictic parthenogenesis in prosobranchs and self-fertilization in the hermaphrodite pulmonates may be viable alternatives to outcrossing sexuality in a number of species. The coexistence of different mating systems in extant populations provides opportunities to examine the forces directing their evolution. We review the models analyzing and predicting genetic variability in subdivided populations, with an emphasis on the effects of inbreeding. Population genetic data on freshwater pulmonates are examined in the context of selfing rates and the loss of variability under selfing. Furthermore, the genetic and demographic factors thought to influence mating system evolution are considered, and we highlight the different approaches available to estimate mating system parameters, in particular the selfing rate. Recent population biological studies on polyploid species (Bulinus truncatus, Ancylus fluviatilis) indicate that selfing is the predominant mating system. These studies have contributed to a deeper understanding of conceptual issues in the evolution of selfing rates. Throughout, we emphasize the need for further carefully designed studies.

Key words

Freshwater pulmonates population genetics mating systems selfing phally polyploidy population structure colonization allozymes genetic markers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, W. T., and Allard, R. W., Effect of polyploidy on phosphoglucose isomerase diversity inFestuca microstachys. Proc. natl Acad. Sci. U.S.A.74 (1977) 1652–1656.PubMedGoogle Scholar
  2. 2.
    Baker, H. G., Characteristics and modes of origin of weeds, in: The Genetics of Colonizing Species, pp. 147–172. Eds H. G. Baker and G. L. Stebbins. Academic Press, New York 1965.Google Scholar
  3. 3.
    Bandoni, S. M., Mulvey, M., Koech, D. K., and Loker, E. S., Genetic structure of Kenyan populations ofBiomphalaria pfeifferi (Gastropoda: Planorbidae). J. mollusc. Stud.56 (1990) 383–391.Google Scholar
  4. 4.
    Barrett, S. C. H., and Kohn, J. R., Genetic and evolutionary consequences of small population size in plants: implications for conservation, in: Genetics and Conservation of Rare Plants, pp. 3–30. Eds D. A. Falk and K. E. Holsinger. Oxford University Press, New York 1991.Google Scholar
  5. 5.
    Baur, B., and Baur, A., Reduced reproductive compatibility inArianta arbustorum (Gastropoda) from distant populations. Heredity69 (1992) 65–72.Google Scholar
  6. 6.
    Begun, D. J., and Aquadro, C. F., African and North American populations ofDrosophila melanogaster are very different at the DNA level. Nature365 (1993) 548–550.CrossRefPubMedGoogle Scholar
  7. 7.
    Bell, G., The Masterpiece of Nature. The Evolution and Genetics of Sexuality. University of California Press, Berkeley 1982.Google Scholar
  8. 8.
    Bierzychudek, P., Patterns in plant parthenogenesis. Experientia41 (1985) 1255–1264.CrossRefGoogle Scholar
  9. 9.
    Boag, D. A., Dispersal in pond snails: potential role of waterfowl. Can. J. Zool.64 (1986) 904–909.Google Scholar
  10. 10.
    Brown, A. H. D., Enzyme polymorphism in plant populations. Theor. Popul. Biol.15 (1979) 1–42.CrossRefGoogle Scholar
  11. 11.
    Brown, A. H. D., Genetic characterization of plant mating systems, in: Plant Population Genetics, Breeding, and Genetic Resources, pp. 145–162. Eds A. H. D. Brown, M. T. Clegg, A. L. Kahler and B. S. Weir. Sinauer Associates, Sunderland 1990.Google Scholar
  12. 12.
    Brown, D. S., Freshwater Snails of Africa and their Medical Importance. 2nd edn. Taylor & Francis Ltd., London 1994.Google Scholar
  13. 13.
    Brown, K. M., and Richardson, T. D., Genetic polymorphism in gastropods: a comparison of methods and habitat scales. Am. malac. Bull.6 (1988) 9–17.Google Scholar
  14. 14.
    Carvalho, G. R., Evolutionary genetics of aquatic clonal invertebrates: concepts, problems and prospects, in: Genetics and Evolution of Aquatic Organisms, pp. 291–323. Ed. A. R. Beaumont. Chapman and Hall, London 1994.Google Scholar
  15. 15.
    Charlesworth, B., The cost of sex in relation to mating system. J. theor. Biol.84 (1980) 655–671.PubMedGoogle Scholar
  16. 16.
    Charlesworth, B., Morgan, M. T., and Charlesworth, D., The effect of deleterious mutations on neutral molecular variation. Genetics134 (1993) 1289–1303.PubMedGoogle Scholar
  17. 17.
    Charlesworth, D., and Charlesworth, B., Inbreeding depression and its evolutionary consequences. A. Rev. Ecol. Syst.18 (1987) 237–268.CrossRefGoogle Scholar
  18. 18.
    Charlesworth, D., Morgan, M. T., and Charlesworth, B., Mutation accumulation in finite outbreeding and inbreeding populations. Genet. Res. (Camb.)61 (1993) 39–56.Google Scholar
  19. 19.
    Charnov, E. L., The Theory of Sex Allocation. Princeton University Press, Princeton 1982.Google Scholar
  20. 20.
    Coutellec-Vreto, M.-A., Guiller, A., and Daguzan, J., Allozyme variation in some populations of the freshwater snailsLymnaea peregra, L. auricularia andL. stagnalis (Gastropoda: Pulmonata). J. mollusc. Stud.60 (1994) 393–403.Google Scholar
  21. 21.
    Dillon, R. T. Jr., The influence of minor human disturbance on biochemical variation in a population of freshwater snails. Biol. Conserv.43 (1988) 137–144.CrossRefGoogle Scholar
  22. 22.
    Dillon, R. T. Jr., Evolution from transplants between genetically distinct populations of freshwater snails. Genetica76 (1988) 111–119.CrossRefGoogle Scholar
  23. 23.
    Dillon, R. T. Jr., and Wethington, A. R., The inheritance of albinism in a freshwater snail,Physa heterostropha. J. Hered.83 (1992) 208–210.PubMedGoogle Scholar
  24. 24.
    Doums, C., Delay, B., and Jarne, P., A problem with the estimate of self-fertilization depression in the hermaphrodite freshwater snailBulinus truncatus: the effect of grouping. Evolution48 (1994) 498–504.Google Scholar
  25. 25.
    Duncan, C. J., Reproduction, in: Pulmonates, vol. 1, Functional Anatomy and Physiology, pp. 309–365. Eds V. Fretter and J. Peake. Academic Press, London 1975.Google Scholar
  26. 26.
    Dybdahl, M. F., and Lively, C. M., Diverse, endemic and polyphyletic clones in mixed populations of a freshwater snail (Potamopyrgus antipodarum). J. evol. Biol. (1995), in press.Google Scholar
  27. 27.
    Ellstrand, N. C., and Roose, M. L., Patterns of genotypic diversity in clonal plant species. Am. J. Bot.74 (1987) 123–131.Google Scholar
  28. 28.
    Fisher, R. A., Average excess and average effect of a gene subsitution. Ann. Eugen.11 (1941) 53–63.Google Scholar
  29. 29.
    Frank, S. A., Coevolutionary genetics of plants and pathogens. Evol. Ecol.7 (1993) 45–75.CrossRefGoogle Scholar
  30. 30.
    Gaffney, P. M., Scott, T. M., Koehn, R. K., and Diehl, W. J., Interrelationships of heterozygosity, growth rate and heterozygote deficiencies in the coot clam,Mulinia lateralis. Genetics124 (1990) 687–699.PubMedGoogle Scholar
  31. 31.
    Geraerts, W. P. M., and Joosse, J., Freshwater snails (Basommatophora), in: The Mollusca, vol. 7, Reproduction, pp. 141–207. Eds A. S. Tompa, N. H. Verdonk and J. A. M. van den Biggelaar. Academic Press, Orlando 1984.Google Scholar
  32. 32.
    Gillespie, J. H., The Causes of Molecular Evolution. Oxford University Press, New York 1991.Google Scholar
  33. 33.
    Goldman, M. A., LoVerde, P. T., and Chrisman, C. L., Hybrid origin of polyploidy in freshwater snails of the genusBulinus (Mollusca: Planorbidae). Evolution37 (1983) 592–600.Google Scholar
  34. 34.
    Hamrick, J. L., and Godt, M. J. W., Allozyme diversity in plant species, in: Plant Population Genetics, Breeding, and Genetic Resources, pp. 43–63. Eds A. H. D. Brown, M. T. Clegg, A. L. Kahler and B. S. Weir. Sinauer Associates, Sunderland 1990.Google Scholar
  35. 35.
    Hartl, D. L., and Clark, A. G., Principles of Population Genetics. 2nd edn. Sinauer Associates, Sunderland 1989.Google Scholar
  36. 36.
    Hauser, L., Carvalho, G. R., Hughes, R. N., and Carter, R. E., Clonal structure of the introduced freshwater snailPotamopyrgus antipodarum (Prosobranchia: Hydrobiidae), as revealed by DNA fingerprinting. Proc. R. Soc., Lond. B249 (1992) 19–25.Google Scholar
  37. 37.
    Hebert, P. D. N., Genotypic characteristics of cyclic parthenogens and their obligately asexual derivatives, in: The Evolution of Sex and its Consequences, pp. 175–195. Ed. S. C. Stearns. Birkhäuser, Basel 1987.Google Scholar
  38. 38.
    Hedrick, P. W., Hitchhiking: a comparison of linkage and partial selfing. Genetics94 (1980) 791–808.PubMedGoogle Scholar
  39. 39.
    Hedrick, P. W., Genetic load and the mating system in homosporous ferns. Evolution41 (1987) 1282–1289.Google Scholar
  40. 40.
    Hedrick, P. W., and Cockerham, C. C., Partial inbreeding: equilibrium heterozygosity and the heterozygosity paradox. Evolution40 (1986) 856–861.Google Scholar
  41. 41.
    Heller, J., Hermaphroditism in molluscs. Biol. J. Linn. Soc.48 (1993) 19–42.CrossRefGoogle Scholar
  42. 42.
    Hughes, R. N., A Functional Biology of Clonal Animals. Chapman and Hall, London 1989.Google Scholar
  43. 43.
    Jarne, P., and Charlesworth, D., The evolution of the selfing rate in functionally hermaphrodite plants and animals. A. Rev. Ecol. Syst.24 (1993) 441–466.CrossRefGoogle Scholar
  44. 44.
    Jarne, P., and Delay, B., Inbreeding depression and self-fertilization inLymnaea peregra (Gastropoda: Pulmonata). Heredity64 (1990) 169–175.Google Scholar
  45. 45.
    Jarne, P., and Delay, B., Population genetics ofLymnaea peregra (Müller) (Gastropoda: Pulmonata) in Lake Geneva. J. mollusc. Stud.56 (1990) 317–322.Google Scholar
  46. 46.
    Jarne, P., Delay, B., Bellec, C., Roizes, G., and Cuny, G., Analysis of mating systems in the schistosome-vector hermaphrodite snailBulinus globosus by DNA fingerprinting. Heredity68 (1992) 141–146.PubMedGoogle Scholar
  47. 47.
    Jarne, P., Finot, L., Bellec, C., and Delay, B., Aphally versus euphally in self-fertile hermaphrodite snails from the speciesBulinus truncatus (Pulmonata: Planorbidae). Am. Nat.139 (1992) 424–432.CrossRefGoogle Scholar
  48. 48.
    Jarne, P., Finot, L., Delay, B., and Thaler, L., Self-fertilization versus cross-fertilization in the hermaphroditic freshwater snailBulinus globosus. Evolution45 (1991) 1136–1146.Google Scholar
  49. 49.
    Jarne, P., Vianey-Liaud, M., and Delay, B., Selfing and outcrossing in hermaphrodite freshwater gastropods (Basommatophora): where, when and why. Biol. J. Linn. Soc.49 (1993) 99–125.CrossRefGoogle Scholar
  50. 50.
    Jarne, P., Viard, F., Delay, B., and Cuny, G., Variable microsatellites in the highly selfing snailBulinus truncatus (Basommatophora: Planorbidae). Molec. Ecol.3 (1994) 527–528.Google Scholar
  51. 51.
    Jelnes, J. E., Experimental taxonomy ofBulinus (Gastropoda: Planorbidae): the West and North African species reconsidered, based upon an electrophoretic study of several enzymes per individual. Zool. J. Linn. Soc.87 (1986) 1–26.Google Scholar
  52. 52.
    Johnson, M. S., Stine, O. C., and Murray, J., Reproductive compatibility despite large-scale genetic divergence inCepaea nemoralis. Heredity53 (1984) 655–665.Google Scholar
  53. 53.
    Johnson, S. G., Spontaneous and hybrid origins of parthenogenesis inCampeloma decisum (freshwater prosobranch snail). Heredity68 (1992) 253–261.Google Scholar
  54. 54.
    Karl, S. A., and Avise, J. C., Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science256 (1992) 100–102.PubMedGoogle Scholar
  55. 55.
    Kimura, M., “Stepping stone” model of population. A. Rep. natl Inst. Genet. Japan3 (1953) 62–63.Google Scholar
  56. 56.
    Lande, R., and Schemske, D. W., The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution39 (1985) 24–40.Google Scholar
  57. 57.
    Larambergue, M. de, Étude de l'autofécondation chez les gastéropodes pulmonés. Recherche sur l'aphallie et la fécondation chezBulinus (Isidora) contortus Michaud. Bull. biol. Fr. Belg.73 (1939) 19–231.Google Scholar
  58. 58.
    Lively, C. M., Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature328 (1987) 519–521.CrossRefGoogle Scholar
  59. 59.
    Lively, C. M., Evolution of parthenogenesis in a freshwater snail: reproductive assurance versus parasitic release. Evolution46 (1992) 907–913.Google Scholar
  60. 60.
    Lynch, M., Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Q. Rev. Biol.59 (1984) 257–290.CrossRefGoogle Scholar
  61. 61.
    Madsen, H., and Frandsen, F., The spread of freshwater snails including those of medical and veterinary importance. Acta trop.46 (1989) 139–146.CrossRefPubMedGoogle Scholar
  62. 62.
    Marti, H. P., and Tanner, M., Field observations on the influence of low water velocities on drifting ofBulinus globosus. Hydrobiologia157 (1988) 119–123.Google Scholar
  63. 63.
    Maruyama, K., and Tachida, H., Genetic variability and geographical structure in partially selfing populations. Jap. J. Genet.67 (1992) 39–51.CrossRefGoogle Scholar
  64. 64.
    Maruyama, T., and Kimura, M., Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc. natl Acad. Sci. U.S.A.77 (1980) 6710–6714.Google Scholar
  65. 65.
    McCauley, D. E., Genetic consequences of local population extinction and recolonization. Trends Ecol. Evol.6 (1991) 5–8.CrossRefGoogle Scholar
  66. 66.
    McCracken, G. F., and Selander, R. K., Self-fertilization and monogenic strains in natural populations of terrestrial slugs. Proc. natl Acad. Sci. U.S.A.77 (1980) 684–688.Google Scholar
  67. 67.
    McMahon, R. F., Physiological ecology of freshwater pulmonates, in: The Mollusca, vol. 6, Ecology, pp. 359–430. Ed. W. D. Russell-Hunter. Academic Press, Orlando 1983.Google Scholar
  68. 68.
    Michod, R. E., and Levin, B. R. (eds), The Evolution of Sex. An Examination of Current Ideas. Sinauer Associates, Sunderland 1988.Google Scholar
  69. 69.
    Mimpfoundi, R., and Greer, G. J., Allozyme comparisons among species of theBulinus forskalii group (Gastropoda Planorbidae) in Cameroon. J. mollusc. Stud.55 (1989) 405–410.Google Scholar
  70. 70.
    Mimpfoundi, R., and Greer, G. J., Allozyme comparisons and ploidy levels among species of theBulinus truncatus/tropicus complex (Gastropoda: Planorbidae) in Cameroon. J. mollusc. Stud.56 (1990) 63–68.Google Scholar
  71. 71.
    Mimpfoundi, R., and Greer, G. J., Allozyme variation among populations ofBulinus forskalii (Ehrenberg, 1831) (Gastropoda: Planorbidae) in Cameroon. J. mollusc. Stud.56 (1990) 363–371.Google Scholar
  72. 72.
    Mimpfoundi, R., and Greer, G. J., Allozyme variation among populations ofBiomphalaria camerunensis (Boettger, 1941) (Gastropoda: Planorbidae) in Cameroon. J. mollusc. Stud.56 (1990) 373–381.Google Scholar
  73. 73.
    Mimpfoundi, R., and Greer, G. J., Allozyme variation among populations ofBiomphalaria pfeifferi (Krauss, 1848) (Gastropoda: Planorbidae) in Cameroon. J. mollusc. Stud.56 (1990) 461–467.Google Scholar
  74. 74.
    Mitchell-Olds, T., and Waller, D. M., Relative performance of selfed and outcrossed progeny inImpatiens capensis. Evolution39 (1985) 533–544.Google Scholar
  75. 75.
    Mulvey, M., Goater, T. M., Esch, G. W., and Crews, A. E., Genotype frequency differences inHalipegus occidualis-infected and uninfectedHelisoma anceps. J. Parasit.73 (1987) 757–761.PubMedGoogle Scholar
  76. 76.
    Mulvey, M., Newman, M. C., and Woodruff, D. S., Genetic differentiation among West Indian populations of the schistosome-transmitting snailBiomphalaria glabrata. Malacologia29 (1988) 309–317.Google Scholar
  77. 77.
    Mulvey, M., and Vrijenhoek, R. C., Multiple paternity in the hermaphroditic snail,Biomphalaria obstructa. J. Hered.72 (1981) 308–312.Google Scholar
  78. 78.
    Mulvey, M., and Vrijenhoek, R. C., Population structure inBiomphalaria glabrata: examination of an hypothesis for the patchy distribution of susceptibility to schistosomes. Am. J. trop. Med. Hyg.31 (1982) 1195–1200.PubMedGoogle Scholar
  79. 79.
    Nei, M., Analysis of gene diversity in subdivided populations. Proc. natl Acad. Sci. U.S.A.70 (1973) 3321–3323.PubMedGoogle Scholar
  80. 80.
    Nei, M., Maruyama, T., and Chakraborty, R., The bottleneck effect and genetic variability in populations. Evolution29 (1975) 1–10.Google Scholar
  81. 81.
    Njiokou, F., Bellec, C., Berrebi, P., Delay, B., and Jarne, P., Do self-fertilization and genetic drift promote a very low genetic variability in the allotetraploidBulinus truncatus (Gastropoda: Planorbidae) populations? Genet. Res. (Camb.)62 (1993) 89–100.Google Scholar
  82. 82.
    Njiokou, F., Bellec, C., Jarne, P., Finot, L., and Delay, B., Mating system analysis using protein electrophoresis in the self-fertile hermaphrodite speciesBulinus truncatus (Gastropoda: Planorbidae). J. mollusc. Stud.59 (1993) 125–133.Google Scholar
  83. 83.
    Njiokou, F., Bellec, C., N'Goran, E. K., Yapi Yapi, G., Delay, B., and Jarne, P., Comparative fitness and reproductive isolation between twoBulinus globosus (Gastropoda: Planorbidae) populations. J. mollusc. Stud.58 (1992) 367–376.Google Scholar
  84. 84.
    Njiokou, F., Delay, B., Bellec, C., N'Goran, E. K., Yapi Yapi, G., and Jarne, P., Population genetic structure of the schistosome-vector snailBulinus globosus: examining the role of genetic drift, migration and human activities. Heredity72 (1994) 488–497.PubMedGoogle Scholar
  85. 85.
    Orive, M. E., Effective population size in organisms with complex life-histories. Theor. Popul. Biol.44 (1993) 316–340.CrossRefPubMedGoogle Scholar
  86. 86.
    Paraense, W. L., Self and cross-fertilization inAustralorbis glabratus. Mem. Inst. Oswaldo Cruz53 (1955) 285–291.Google Scholar
  87. 87.
    Paraense, W. L., A genetic approach to the systematics of planorbid molluscs. Evolution10 (1956) 403–407.Google Scholar
  88. 88.
    Paraense, W. L., One-sided reproductive isolation between geographically remote populations of a planorbid snail. Am. Nat.93 (1959) 93–101.CrossRefGoogle Scholar
  89. 89.
    Patterson, C. M., and Burch, J. B., Chromosomes of pulmonate molluscs, in: Pulmonates, vol. 2A, Systematics, Evolution and Ecology, pp. 171–217. Eds V. Fretter and J. Peake. Academic Press, London 1978.Google Scholar
  90. 90.
    Pointier, J. P., Delay, B., Toffart, J. L., Lefèvre, M., and Romero-Alvarez, R., Life history traits of three morphs ofMelanoides tuberculata (Gastropoda: Thiaridae), an invading snail in the French West Indies. J. mollusc. Stud.58 (1992) 415–423.Google Scholar
  91. 91.
    Pointier, J.-P., and McCullough, F., Biological control of the snail hosts ofSchistosoma mansoni in the Caribbean area usingThiara spp. Acta trop.46 (1989) 147–155.CrossRefPubMedGoogle Scholar
  92. 92.
    Pointier, J. P., Thaler, L., Pernot, A. F., and Delay, B., Invasion of the Martinique island by the parthenogenetic snailMelanoides tuberculata and the succession of morphs. Acta oecol.14 (1993) 33–42.Google Scholar
  93. 93.
    Pollak, E., On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics117 (1987) 353–360.PubMedGoogle Scholar
  94. 94.
    Ponder, W. F.,Potamopyrgus antipodarum — a molluscan coloniser of Europe and Australia. J. mollusc. Stud.54 (1988) 271–285.Google Scholar
  95. 95.
    Price, S. C., and Jain, S. K., Are inbreeders better colonizers? Oecologia (Berl.)49 (1981) 283–286.CrossRefGoogle Scholar
  96. 96.
    Quattro, J. M., Avise, J. C., and Vrijenhoek, R. C., Mode of origin and sources of genotypic diversity in triploid gynogenetic fish clones (Poeciliopsis: Poeciliidae). Genetics130 (1992) 621–628.PubMedGoogle Scholar
  97. 97.
    Rees, W. J., The aerial dispersal of Mollusca. Proc. malac. Soc. Lond.36 (1965) 269–282.Google Scholar
  98. 98.
    Ritland, K., Joint maximum likelihood estimation of genetic and mating structure using open-pollinated progenies. Biometrics42 (1986) 25–43.Google Scholar
  99. 99.
    Ritland, K., and Jain, S., A model for the estimation of outcrossing rate and gene frequencies usingn independent loci. Heredity47 (1981) 35–52.Google Scholar
  100. 100.
    Rollinson, D., Kane, R. A., Warlow, A., Southgate, V. R., and Gopaul, A. R., Observations on genetic diversity ofBulinus cernicus (Gastropoda: Planorbidae) from Mauritius. J. Zool. (Lond.)222 (1990) 19–26.Google Scholar
  101. 101.
    Rollinson, D., and Wright, C. A., Population studies onBulinus cernicus from Mauritius. Malacologia25 (1984) 447–463.Google Scholar
  102. 102.
    Russell-Hunter, W. D., Ecology of freshwater pulmonates, in: Pulmonates, vol. 2A, Systematics, Evolution and Ecology, pp. 335–383. Eds V. Fretter and J. Peake. Academic Press, London 1978.Google Scholar
  103. 103.
    Schoen, D. J., and Brown, A. H. D., Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc. natl Acad. Sci. U.S.A.88 (1991) 4494–4497.PubMedGoogle Scholar
  104. 104.
    Schrag, S. J., Mooers, A. Ø., Ndifon, G. T., and Read, A. F., Ecological correlates of male outcrossing ability in a simultaneous hermaphrodite snail. Am. Nat.143 (1994) 636–655.CrossRefGoogle Scholar
  105. 105.
    Schrag, S. J., Ndifon, G. T., and Read, A. F., Temperature-determined outcrossing ability in wild populations of a simultaneous hermaphrodite snail. Ecology75 (1994) 2066–2077.Google Scholar
  106. 106.
    Schrag, S. J., and Rollinson, D., Effects ofSchistosoma haematobium infection on reproductive success and male outcrossing ability in the simultaneous hermaphrodite,Bulinus truncatus (Gastropoda: Planorbidae). Parasitology108 (1994) 27–34.PubMedGoogle Scholar
  107. 107.
    Schrag, S. J., Rollinson, D., Keymer, A. E., and Read, A. F., Heritability of male outcrossing ability in the simultaneous hermaphrodite,Bulinus truncatus (Gastropoda: Planorbidae). J. Zool. (Lond.)226 (1992) 311–319.Google Scholar
  108. 108.
    Selander, R. K., and Hudson, R. O., Animal population structure under close inbreeding: the land snailRumina in southern France. Am. Nat.110 (1976) 695–718.CrossRefGoogle Scholar
  109. 109.
    Selander, R. K., and Kaufman, D. W., Self-fertilization and genetic population structure in a colonizing land snail. Proc. natl Acad. Sci. U.S.A.70 (1973) 1186–1190.Google Scholar
  110. 110.
    Selander, R. K., and Ochman, H., The genetic structure of populations as illustrated by molluscs. Isozymes 10 (1983) 93–123.PubMedGoogle Scholar
  111. 111.
    Slatkin, M., Gene flow and genetic drift in a species subject to frequent local extinctions. Theor. popul. Biol.12 (1977) 253–262.CrossRefPubMedGoogle Scholar
  112. 112.
    Slatkin, M., Gene flow in natural populations. A. Rev. Ecol. Syst.16 (1985) 393–430.CrossRefGoogle Scholar
  113. 113.
    Slatkin, M., Gene flow and the geographic structure of natural populations. Science236 (1987) 787–792.PubMedGoogle Scholar
  114. 114.
    Städler, T., Self-fertilization versus cross-fertilization in polyploid hermaphrodites: gene silencing as a new evolutionary mechanism. Verh. dt. zool. Ges.87.1 (1994) 60.Google Scholar
  115. 115.
    Städler, T., Loew, M., and Streit, B., Genetic evidence for low outcrossing rates in polyploid freshwater snails (Ancylus fluviatilis). Proc. R. Soc. Lond. B251 (1993) 207–213.Google Scholar
  116. 116.
    Stearns, S. C. (ed.), The Evolution of Sex and its Consequences. Birkhäuser, Basel 1987.Google Scholar
  117. 117.
    Streit, B., Energy partitioning and ecological plasticity in populations ofAncylus fluviatilis (Gastropoda: Basommatophora). Am. malac. Bull.3 (1985) 151–168.Google Scholar
  118. 118.
    Streit, B., Städler, T., Kuhn, K., Loew, M., Brauer, M., and Schierwater, B., Molecular markers and evolutionary processes in hermaphrodite freshwater snails, in: Molecular Ecology and Evolution: Approaches and Applications, pp. 247–260. Eds B. Schierwater, B. Streit, G. P. Wagner and R. DeSalle. Birkhäuser, Basel 1994.Google Scholar
  119. 119.
    Uyenoyama, M. K., Holsinger, K. E., and Waller, D. M., Ecological and genetic factors directing the evolution of self-fertilization. Oxf. Surv. evol. Biol.9 (1993) 327–381.Google Scholar
  120. 120.
    Vrijenhoek, R. C., Ecological differentiation among clones: the frozen niche-variation model, in: Population Biology and Evolution, pp. 217–231. Eds K. Wöhrmann and V. Loeschcke. Springer Verlag, Berlin 1984.Google Scholar
  121. 121.
    Vrijenhoek, R. C., and Graven, M. A., Population genetics of EgyptianBiomphalaria alexandrina (Gastropoda, Planorbidae). J. Hered.83 (1992) 255–261.Google Scholar
  122. 122.
    Wade, M. J., and McCauley, D. E., Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution42 (1988) 995–1005.Google Scholar
  123. 123.
    Wallace, C., Parthenogenesis, sex and chromosomes inPotamopyrgus. J. mollusc. Stud.58 (1992) 93–107.Google Scholar
  124. 124.
    Waples, R. S., Temporal variation in allele frequencies: testing the right hypothesis. Evolution43 (1989) 1236–1251.Google Scholar
  125. 125.
    Waser, N. M., Population structure, optimal outbreeding, and assortative mating in angiosperms, in: The Natural History of Inbreeding and Outbreeding, pp. 173–199. Ed. N. W. Thornhill. University of Chicago Press, Chicago and London 1993.Google Scholar
  126. 126.
    Weir, B. S., and Cockerham, C. C., EstimatingF-statistics for the analysis of population structure. Evolution38 (1984) 1358–1370.Google Scholar
  127. 127.
    Werth, C. R., Guttman, S. I., and Eshbaugh, W. H., Recurring origins of allopolyploid species inAsplenium. Science228 (1985) 731–733.Google Scholar
  128. 128.
    Wethington, A. R., and Dillon, R. T. Jr., Reproductive development in the hermaphroditic freshwater snailPhysa monitored with complementing albino lines. Proc. R. Soc. Lond. B252 (1993) 109–114.Google Scholar
  129. 129.
    Whitlock, M. C., and McCauley, D. E., Some population genetic consequences of colony formation and extinction: genetic correlations within founding groups. Evolution44 (1990) 1717–1724.Google Scholar
  130. 130.
    Woodruff, D. S., Mulvey, M., and Yipp, M. W., Population genetics ofBiomphalaria straminea in Hong Kong. J. Hered.76 (1985) 355–360.PubMedGoogle Scholar
  131. 131.
    Woolhouse, M. E. J., Passive dispersal ofBulinus globosus. Ann. Trop. Med. Parasit.82 (1988) 315–317.PubMedGoogle Scholar
  132. 132.
    Woolhouse, M. E. J., and Chandiwana, S. K., Spatial and temporal heterogeneity in the population dynamics ofBulinus globosus andBiomphalaria pfeifferi and in the epidemiology of their infection with schistosomes. Parasitology98 (1989) 21–34.PubMedGoogle Scholar
  133. 133.
    Wright, S., Evolution in Mendelian populations. Genetics16 (1931) 97–159.Google Scholar
  134. 134.
    Wright, S., Isolation by distance. Genetics28 (1943) 114–138.Google Scholar
  135. 135.
    Wright, S., The genetical structure of populations. Ann. Eugen.15 (1951) 323–354.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1995

Authors and Affiliations

  • P. Jarne
    • 1
  • T. Städler
    • 2
  1. 1.Génétique et Environnement, Institut des Sciences de l'EvolutionUniversité Montpellier IIMontpellier Cedex 5France
  2. 2.Zoologisches InstitutJ.W. Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations