Numerical Algorithms

, Volume 12, Issue 2, pp 259–272 | Cite as

Rational approximations, software and test methods for sine and cosine integrals

  • Allan J. MacLeod
Article

Abstract

Rational approximations to the sine integralSi(x) and cosine-integralCi(x) are developed which give an accuracy of 20sf. The robust construction of software for these functions is discussed, together with a test procedure for assessing the performance of such codes. Use of the tests discovers a major error in the netlib library FN codes forSi. Fortran versions of the codes and tests are available by electronic mail.

Keywords

Sine-integral cosine-integral rational software testing 

Subject classification

65D20 65V05 41A20 33A10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Abramowitz and I.A. Stegun (eds.),Handbook of Mathematical Functions, Dover, New York, 1965.Google Scholar
  2. [2]
    C.W. Clenshaw, The numerical solution of linear differential equations in Chebyshev series, Proc. Camb. Phil. Soc. 53 (1957) 134–149.Google Scholar
  3. [3]
    W.J. Cody, Algorithm 665: MACHAR: A subroutine to dynamically determine machine parameters, ACM Trans. Math. Soft., 14 (1988) 303–311.CrossRefGoogle Scholar
  4. [4]
    W.J. Cody, Algorithm 715: SPECFUN — A portable FORTRAN package of special function routines and test drivers, ACM Trans. Math. Softw. 19 (1993) 22–32.CrossRefGoogle Scholar
  5. [5]
    W.J. Cody, W. Fraser and J.F. Hart, Rational Chebyshev approximation using linear equations, Numer. Math. 12 (1968) 242–251.Google Scholar
  6. [6]
    W.J. Cody and L. Stoltz, The use of Taylor series to test accuracy of function programs, ACM Trans. Math. Soft. 17 (1991) 55–63.CrossRefGoogle Scholar
  7. [7]
    J.J. Dongarra and E. Grosse, Distribution of mathematical software via electronic mail, Comm. ACM 30 (1987) 403–407.CrossRefGoogle Scholar
  8. [8]
    W. Gautschi, Algorithm 282 — derivatives ofe x/x, cosx/x, and sinx/x, Comm. ACM 9 (1966) 272.CrossRefGoogle Scholar
  9. [9]
    W. Gautschi, Computation of successive derivatives off(z)/z, Math. Comp. 20 (1966) 209–214.Google Scholar
  10. [10]
    W. Gautschi and B.J. Klein, Recursive computation of certain derivatives — a study of error propogation, Comm. ACM 13 (1970) 7–9.CrossRefGoogle Scholar
  11. [11]
    W. Gautschi and B.J. Klein, Remark on Algorithm 282 — Derivatives ofe x/x, cosx/x, and sinx/x, Comm. ACM 13 (1970) 53–54.CrossRefGoogle Scholar
  12. [12]
    J.F. Hart, E.W. Cheney, C.L. Lawson, H.J. Maehhly, C.K. Mesztenyi, J.R. Rice, H.G. Thacher and C. Witzgall,Computer Approximations, Wiley, New York, 1968.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • Allan J. MacLeod
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of PaisleyPaisleyScotland

Personalised recommendations