Numerical Algorithms

, Volume 3, Issue 1, pp 75–80 | Cite as

Some vector sequence transformations with applications to systems of equations

  • C. Brezinski
  • H. Sadok
Article

Abstract

First, recursive algorithms for implementing some vector sequence transformations are given. In a particular case, these transformations are generalizations of Shanks transformation and the G-transformation. When the sequence of vectors under transformation is generated by linear fixed point iterations, Lanczos' method and the CGS are recovered respectively. In the case of a sequence generated by nonlinear fixed point iterations, a quadratically convergent method based on the ε-algorithm is recovered and a nonlinear analog of the CGS method is obtained.

Subject classification

AMS (MOS) 65B05 65F10 65F25 

Keywords

Vector sequence extrapolation Lanczos method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Brezinski,Accélération de la Convergence en Analyse Numerique, Lecture Notes in Mathematics vol. 584 (Springer, Berlin, 1977).Google Scholar
  2. [2]
    C. Brezinski, Généralisations de la transformation de Shanks, de la table de Padé et de l' ε-algorithme, Calcolo 12 (1975) 317–360.Google Scholar
  3. [3]
    C. Brezinski,Padé-type Approximation and General Orthogonal, Polynomials Birkhäuser, Basel, 1980.Google Scholar
  4. [4]
    C. Brezinski, Some determinatal identities in a vector space, with applications, inPadé Approximation and its Applications, eds. H. Werner et al., Lecture Notes in Mathematics, vol. 1071 (Springer, Berlin, 1984).Google Scholar
  5. [5]
    C. Brezinski and M. Redivo Zaglia, A new presentation of orthogonal polynomials with applications to their computation, Numer. Algorithms 1 (1991) 207–221.Google Scholar
  6. [6]
    C. Brezinski and M. Redivo Zaglia,Extrapolation Methods. Theory and Practice (North-Holland, Amsterdam, 1991).Google Scholar
  7. [7]
    C. Brezinski and H. Sadok, Lanczos type methods for systems of linear equations, submitted.Google Scholar
  8. [8]
    H. Le Ferrand, Convergence of the topological ε-algorithm for solving systems of nonlinear equations, Numer. Algorithms, this volume.Google Scholar
  9. [9]
    W.C. Pye and T.A. Atchison, An algorithm for the computation of higher order G-transformation, SIAM J. Numer. Anal. 10 (1973) 1–7.CrossRefGoogle Scholar
  10. [10]
    P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 10 (1989) 36–52.CrossRefGoogle Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1992

Authors and Affiliations

  • C. Brezinski
    • 1
  • H. Sadok
    • 1
  1. 1.Laboratoire d'Analyse Numérique et d'Optimisation, UFR IEEA-M3Université des Sciences et Technologies de LilleVilleneuve d'Ascq-CedexFrance

Personalised recommendations