Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A program for solving the L2 reduced-order model problem with fixed denominator degree

  • 110 Accesses

  • 12 Citations

Abstract

A set of necessary conditions that must be satisfied by the L2 optimal rational transfer matrix approximating a given higher-order transfer matrix, is briefly described. On its basis, an efficient iterative numerical algorithm has been obtained and implemented using standard MATLAB functions. The purpose of this contribution is to make the related computer program available and to illustrate some significant applications.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    P.R. Aigrain and A.M. Williams, Synthesis of n-reactance networks for desired transient response, J. Appl. Phys. 20 (1949) 597–600.

  2. [2]

    K.J. Åström,Introduction to Stochastic Control Theory (Academic Press, New York, 1970).

  3. [3]

    L. Baratchart, Recent and new results in rational L2 approximation, in:Modelling, Robustness and Sensitivity Reduction in Control Systems, ed. R.F. Curtain (Springer, Berlin, 1987) pp. 119–126.

  4. [4]

    L. Baratchart, M. Cardelli and M. Olivi, Identification and rational L2 approximation: a gradient algorithm, Automatica 27 (1991) 413–418.

  5. [5]

    A.E. Bryson and A. Carrier, Second-order algorithm for optimal model order reduction, J. Guidance Control Dynam. 13 (1990) 887–892.

  6. [6]

    F.R. Gantmacher,The Theory of Matrices, Vol. 1 (Chelsea, New York, 1977).

  7. [7]

    W. Gawronski and J.N. Juang, Model reduction for flexible structures, Control Dyn. Syst. 36 (1990) 143–222.

  8. [8]

    D.C. Hyland and D.S. Bernstein, The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton and Moore, IEEE Trans. Auto. Contr. AC-30 (1985) 1201–1211.

  9. [9]

    W. Krajewski, A. Lepschy, G.A. Mian and U. Viaro, On model reduction by L2-optimal pole retention, J. Franklin Inst. 327 (1990) 61–70.

  10. [10]

    W. Krajewski, A. Lepschy and U. Viaro, Optimality conditions in multivariable L2 model reduction, J. Franklin Inst. 330 (1993) 431–439.

  11. [11]

    C. P. Kwong, Optimal chained aggregation for reduced order modelling, Int. J. Control 35 (1982) 965–982.

  12. [12]

    L. Meier and D.G. Luenberger, Approximation of linear constant systems, IEEE Trans. Auto. Contr. AC-12 (1967) 585–587.

  13. [13]

    R.N. Mishra and D.A. Wilson, A new algorithm for optimal reduction of multivariable systems, Int. J. Control 31 (1980) 443–466.

  14. [14]

    B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Auto. Contr. AC-26 (1981) 17–32.

  15. [15]

    S. Mukherjee and R. N. Mishra, Reduced order modelling of linear multivariable systems using an error minimization technique. J. Franklin Inst. 325 (1988) 235–245.

  16. [16]

    M. Olivi and S. Steer, Approximation rationelle en norme L2 des systèmes dynamiques, APII 24 (1990) 481–510.

  17. [17]

    E. Rosencher, Approximation rationelle des filtres à un ou deux indices: une approche Hilbertienne, Thèse de docteur-ingénieur, Univ. Paris IX-Dauphine (1978).

  18. [18]

    G. Ruckebush, Sur l'approximation rationelle des filtres, Rapport n. 35, CMA Ecole Polytechnique, Paris (1978).

  19. [19]

    Y. Shamash, Linear system reduction using Padé approximation to allow retention of dominant modes, Int. J. Control 21 (1975) 257–272.

  20. [20]

    J.T. Spanos, M.H. Milman and D.L. Mingori, A new algorithm for L2 optimal model reduction, Automatica 28 (1992) 897–909.

  21. [21]

    J.L. Walsh,Interpolation and Approximation by Rational Functions in the Complex Domain (AMS, Providence, RI, 1935).

  22. [22]

    D.A. Wilson, Optimum solution of model-reduction problem, Proc. IEE 117 (1970) 1161–1165.

  23. [23]

    D.A. Wilson, Model reduction for multivariable systems, Int. J. Control 20 (1974) 57–64.

  24. [24]

    D. Žigić, L. T. Watson, E.G. Collins, Jr., and D. S. Bernstein, Homotopy methods for solving the optimal projection equations for the H2 reduced order model problem, Int. J. Control 56 (1992) 173–191.

Download references

Author information

Additional information

Work partially supported byConsorzio Padova Ricerche through the IRI programme “Consortia Città Ricerche—Central European Initiative”.

Communicated by C. Brezinski

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krajewski, W., Lepschy, A., Redivo-Zaglia, M. et al. A program for solving the L2 reduced-order model problem with fixed denominator degree. Numer Algor 9, 355–377 (1995). https://doi.org/10.1007/BF02141596

Download citation

Keywords

  • Linear dynamic systems
  • rational approximation
  • L2 norm

AMS subject classification

  • 41A20