Advertisement

Journal of thermal analysis

, Volume 46, Issue 2, pp 353–359 | Cite as

Thermodynamics of CaCO3 phase transitions

  • G. Wolf
  • J. Lerchner
  • H. Schmidt
  • H. Gamsjäger
  • E. Königsberger
  • P. Schmidt
13th IUPAC Conference on Chemical Thermodynamics

Abstract

Thermodynamic quantities of the aragonite → calcite transition, were evaluated using results of calorimetric investigations. (1) Dissolution enthalpies of the CaCO3 polymorphs aragonite and calcite measured near room temperature with different calorimeter, (2) the enthalpy of the spontaneous phase transformation obtained by differential scanning calorimetry, (3) heat capacities and heat capacity differences determined with a heat flux calorimeter as well as previously determined, (4)e.m.f. data on Gibbs-energies of the phase transition were processed simultaneously with an optimization routine developed recently. The optimized data set (25°C) given below corresponds reasonably with CODATA recommendations, however, the precision has markedly improved.

Keywords

aqueous solutions calcium carbonate polymorphs dissolution reactions phase transitions 
ΔaragGcalc*/J mol−1

−840±20

ΔaragHcalc*/J mol−1

440±50

ΔaragScalc*/J mol−1 K−1

4.3±0.2

ΔaragCcalcp*/J mol−1 K−1

0.0±0.2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. D. Carlson, R. J. Reeder, editor, Carbonates: Mineralogy and Chemistry; Reviews in Mineralogy, Vol. 11, Chapter 6, Mineralogical Society of America, 1983, p. 191–225.Google Scholar
  2. 2.
    L. N. Plummer and E. Busenberg, Geochim. Cosmochim. Acta, 46 (1982) 1011.Google Scholar
  3. 3.
    E. Königsberger, J. Bugajski and H. Gamsjäger, Geochim. Cosmochim. Acta, 53 (1989) 2807.Google Scholar
  4. 4.
    H. L. J. Bäckström, J. Amer. Chem. Soc., 47 (1925) 2432.Google Scholar
  5. 5.
    W. A. Roth and P. Chall, Z. Elektrochem. Soc., 34 (1928) 185.Google Scholar
  6. 6.
    P. A. Rock and A. Z. Gordon, J. Amer. Chem. Soc., 98 (1976) 2364.Google Scholar
  7. 7.
    G. Eriksson and K. Hack, Metall. Trans. B, 21 B (1990) 1013.Google Scholar
  8. 8.
    E. Königsberger and G. Eriksson, CALPHAD, 1994 (submitted for publication).Google Scholar
  9. 9.
    C. Günther, R. Pfestorf, M. Rother, R. Zimmermann, G. Wolf and V. Schröter, J. Thermal Anal., 33 (1988)359.Google Scholar
  10. 10.
    V. Vacek and V. Pekárek, Chemicky Prumysl, 4 (1982) 178.Google Scholar
  11. 11.
    G. Wolf, Proc. 3rd Polish Conf. on Calorimetry, 1984, p. 47.Google Scholar
  12. 12.
    G. Wolf, Proc 4th Polish Conf. on Calorimetry, 1986.Google Scholar
  13. 13.
    F. Lippmann, Fortschr. Mineral., 38 (1960) 156.Google Scholar
  14. 14.
    K. Kobayashi, Sci. Rep. Tohoku University Series 1, 35 (1951) 103.Google Scholar
  15. 15.
    K. Kobayashi, Sci. Rep. Tohoku University Series 1, 35 (1951) 111.Google Scholar
  16. 16.
    L. A. K. Staveley and R. G. Linford, J. Chem. Thermodynamics, 1 (1969) 1.Google Scholar
  17. 17.
    G. Wolf and H. Schmidt, to be published.Google Scholar
  18. 18.
    CODATA Task Group, in D. Garvin, V. B. Parker and H. J. White, Jr., editors, CODATA Series on Thermodynamic Properties, Hemisphere Publishing Corporation, Washington-New York-London, 1987.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • G. Wolf
    • 1
  • J. Lerchner
    • 1
  • H. Schmidt
    • 1
  • H. Gamsjäger
    • 2
    • 1
  • E. Königsberger
    • 2
    • 1
  • P. Schmidt
    • 2
    • 1
  1. 1.Institut für Physikalische ChemieFreibergFederal Republic of Germany
  2. 2.Abteilung für Physikalische ChemieMontanuniversität LeobenLeobenAustria

Personalised recommendations