Lasers in Medical Science

, Volume 10, Issue 1, pp 55–65 | Cite as

Tissue parameters determining the visual appearance of normal skin and port-wine stains

  • L. O. Svaasand
  • L. T. Norvang
  • E. J. Fiskerstrand
  • E. K. S. Stopps
  • M. W. Berns
  • J. S. Nelson
Original Articles


Port-wine stain is a congenital birthmark consisting of an abnormal density of blood vessels in the upper dermis. The enlarged blood volume gives the lesion a red to purple colour. The aim of the treatments is to destroy the vessels to the extent necessary for obtaining a normal skin coloration. Thus, in principle, all relevant information about the lesion should be contained in a reflectance spectrum in the visible. However, the relation between the reflectance spectrum and tissue parameters such as scattering, melanin content and blood distribution is somewhat composite. This work tries to enlighten this relation in terms of a very simple analytical mathematical model, and it is demonstrated that such a model at least will contribute to a qualitative understanding of the relevance of the various parameters.

Key words

Port-wine stains Reflection spectra Scattering coefficients Absorption coefficients Optical diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation.Science 1983,220:524–7PubMedGoogle Scholar
  2. 2.
    Nelson JS, Milner TE, Anvari B et al. Dynamic cooling during pulsed laser treatment of port wine stain—a new methodology with preliminary clinical evaluation.Arch Dermatol (in press)Google Scholar
  3. 3.
    Svaasand LO, Milner TE, Anvari B et al. Epidermal heating during laser induced photothermolysis of port wine stains: modeling melanosomal heating after dynamic cooling the skin surface.SPIE Europto Series 1994,2323:366–77Google Scholar
  4. 4.
    Ishimaru A.Wave Propagation and Scattering in Random Media. New York: Academic Press, 1978:66Google Scholar
  5. 5.
    Steinke JM, Shepherd AP. Diffusion model of the optical absorbance of whole blood.J Opt Soc Am 1988,5:813–22Google Scholar
  6. 6.
    Hillenkamp F. Interaction between laser radiation and biological systems. In: Hillenkamp F, Pratesi R, Sacci C (eds)Lasers in Biology and Medicine.New York: Plenum Press, 1979:57, 61Google Scholar
  7. 7.
    van Gemert MJC, Welch AJ. Clinical use of lasertissue interactions.IEEE Eng Med Biol Magazine 1989,8(4):10–3CrossRefGoogle Scholar
  8. 8.
    van Gemert MJC, Jacques SL, Sterenborg HJCM, Star WM. Skin optics.IEEE Trans Biomed Eng 1989,36:1146–54CrossRefPubMedGoogle Scholar
  9. 9.
    Wan S, Anderson RR, Parrish JA. Analytical modeling for the optical properties of the skin in vitro and in vivo applications.Photochem Photobiol 1981,34:493–9PubMedGoogle Scholar
  10. 10.
    Anderson RR, Parrish JA. Optical properties of human skin. In: Regan JD, Parrish JA (eds)The Science of Photomedicine. New York: Plenum Press, 1982:147–194Google Scholar
  11. 11.
    Duck FA.Physical Properties of Tissue. London: Academic Press, 1990Google Scholar
  12. 12.
    Hruza GJ, Dover JS, Flotte TJ et al. Q-switched ruby laser irradiation of normal human skin.Arch Dermatol 1991,127:1799–805CrossRefPubMedGoogle Scholar
  13. 13.
    Moschella SL, Hurley HJ. Dermatology, 3rd edn. London: W. B. Saunders, 1992:1421–35Google Scholar
  14. 14.
    Jacques SL, McAuliffe DJ. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during laser irradiation.Photochem Photobiol 1991,6:769–75Google Scholar
  15. 15.
    Scheuplein RJ. A survey of some fundamental aspects of the absorption and reflection of light by tissue.J Soc Cos Chem 1964,15:11–122Google Scholar
  16. 16.
    Haskell RC, Svaasand LO, Tsay T-T et al. Boundary conditions for the diffusion equation in radiative transfer.J Opt Soc Am 1994,11:2727–41Google Scholar

Copyright information

© W.B. Saunders Company Ltd 1995

Authors and Affiliations

  • L. O. Svaasand
    • 1
    • 2
  • L. T. Norvang
    • 1
    • 2
  • E. J. Fiskerstrand
    • 3
  • E. K. S. Stopps
    • 1
  • M. W. Berns
    • 2
  • J. S. Nelson
    • 2
  1. 1.Norwegian Institute of Technology, Division of Physical ElectronicsUniversity of TrondheimTrondheimNorway
  2. 2.Beckman Laser Institute and Medical ClinicUniversity of CaliforniaIrvineUSA
  3. 3.Department of DermatologyUniversity HospitalTrondheimNorway

Personalised recommendations