, Volume 15, Issue 1, pp 9–20 | Cite as

Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory

  • Giancarlo Benettin
  • Luigi Galgani
  • Antonio Giorgilli
  • Jean-Marie Strelcyn


Since several years Lyapunov Characteristic Exponents are of interest in the study of dynamical systems in order to characterize quantitatively their stochasticity properties, related essentially to the exponential divergence of nearby orbits. One has thus the problem of the explicit computation of such exponents, which has been solved only for the maximal of them. Here we give a method for computing all of them, based on the computation of the exponents of order greater than one, which are related to the increase of volumes. To this end a theorem is given relating the exponents of order one to those of greater order. The numerical method and some applications will be given in a forthcoming paper.


Dynamical System Mechanical Engineer Civil Engineer Alla Hamiltonian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Da diversi anni gli esponenti caratteristici di Lyapunov sono divenuti di notevole interesse nello studio dei sistemi dinamici al fine di caratterizzare quantitativamente le proprietà di stocasticità, legate essenzialmente alla divergenza esponenziale di orbite vicine. Si presenta dunque il problema del calcolo esplicito di tali esponenti, già risolto solo per il massimo di essi. Nel presente lavoro si dà un metodo per il calcolo di tutti tali esponenti, basato sul calcolo degli esponenti di ordine maggiore di uno, legati alla crescita di volumi. A tal fine si dà un teorema che mette in relazione gli esponenti di ordine uno con quelli di ordine superiore. Il metodo numerico e alcune applicazioni saranno date in un sucessivo articolo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lyapunov A. M.,Problème Général de la Mouvement (transl. from Russian), Ann. Fac. Sci. Univ. Touluse9, p. 203–475, 1907. Reproduced in Ann. Math. Study, vol. 17, Princeton 1947.Google Scholar
  2. [2]
    Demidovich B. P.,Lectures on Mathematical Theory of Stability (in Russian), ed. Nauka Moscow, 1967.Google Scholar
  3. [3]
    Bylov B. F., Vinograd R. E., Grobman D. M. andNemyckij V. V.,The Theory of Lyapunov Characteristic Numbers and their Application to the Theory of Stability (in Russian), ed. Nauka Moscow, 1966.Google Scholar
  4. [4]
    Cesari L.,Asymptotic Behaviour and Stability Problems in Ordinary Differential Equations, Springer-Verlag, Berlin, 1959.Google Scholar
  5. [5]
    Oseldec V. I.,The Multiplicative Ergodic Theorem. The Lyapunov Characteristic Numbers of Dynamical Systems, (in Russian). Trudy Mosk. Mat. Obsch.19, p. 179–210, 1968. English traslation in Trans. Mosc. Math. Soc.19, p. 197, 1968.Google Scholar
  6. [6]
    Benettin G., Galgani L. andStrelcyn J.-M.,Kolmogrov Entropy and Numerical Experiments, Phys. Rev.A14, p. 2338–2345, 1976.Google Scholar
  7. [7]
    Contopoulos G., Galgani L. andGiorgilli A.,On the Number of Isolating Integrals for Hamiltonian Systems, Phys. Rev.A18, p. 1183–1189, 1978.Google Scholar
  8. [8]
    Chirikov B. V.,Researches Concerning the Theory of Nonlinear Resonances and Stochasticity, CERN Trans. No. 71 - 40 (Geneva, 1971).Google Scholar
  9. [9]
    Chirikov B. V. andIzrailev F. M.,Nonlinear Mapping: Stochastic Components, in Colloque International CNRS sur les Transformations Ponctuelles et leurs Applications, ed. du CNRS Paris, 1976.Google Scholar
  10. [10]
    Casartelli M., Diana E., Galgani L. andScotti A.,Numerical Computations on a Stochastic Parameter related to the Kolmogorov Entropy, Phys Rev.A13, p. 1921–1925, 1976.Google Scholar
  11. [11]
    Pesin Ya. B.,Lyapunov Characteristic Exponents and Smooth Ergodic Theory (in Russian), Uspekhi Mat. Nauk.32, N. 4, p. 55–112, 1977; Engl. Transl. in Russ. Math. Surveys,32, N. 4, p. 55 – 114, 1977.Google Scholar
  12. [12]
    Benettin G. andStrelcyn J.-M.,Numerical Experiments on the Free Motion of a Point Mass Moving in a Plane Convex Region, Stochastic Transition and Entropy, Phys. Rev.A17, p. 773–785, 1978.Google Scholar
  13. [13]
    Benettin G., Galgani L., Giorgilli A. andStrelcyn J.-M.,Tous les Nombres Caractéristiques de Lyapounov sont effectivement calculables, C.R. Acad. Sc. Paris, 286A, p. 431–433, 1978.Google Scholar
  14. [14]
    Benettin G., Froeschle C. andScheidecker J. P.,Kolmogorov Entropy of a Dynamical System with Increasing Number of Degrees of Freedom, Phys. Rev.A19, p. 2454–2460, 1979.Google Scholar
  15. [15]
    Benettin G., Galgani L., Giorgilli A. andStrelcyn J.-M.,Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; a Method for Computing all of them, Part II: Numerical Application, Meccanica.Google Scholar
  16. [16]
    Ruelle D.,Analiticity Properties of the Characteristic Exponents of Random Matrix Products, IHES preprint 1977.Google Scholar
  17. [17]
    Raghunathan M. S.,A Proof of the Oseledec Multiplicative Ergodic Theorem, (to be published).Google Scholar
  18. [18]
    Shilov G. E.,Introduction to be the Theory of Linear Spaces, Dover Publ, New York 1961.Google Scholar
  19. [19]
    Ruelle D.,Ergodic Theory of Differentiable Dynamical Systems, IHES preprint 1978.Google Scholar
  20. [20]
    Walters P.,Ergodic Theory; Introductory Lectures, Notes in Mathematics No. 458, Springer-Verlag, Berlin, 1975.Google Scholar
  21. [21]
    Ruelle D.,Sensitive Dependence on Initial Condition and Turbulent Behaviour of Dynamical Systems, Lect. Notes in Phys. No. 80, Springer-Verlag, Berlin, 1978.Google Scholar
  22. [22]
    Sternberg S.,Lectures on Differential Geometry, Prentice Hall, Engl. Cl., N. J., 1966.Google Scholar
  23. [23]
    Shilov G. E. andGurevich B. L.,Integral, Measure and Derivative: A unified Approach, Prentice Hall, Engl. Cl., N. J., 1966. Reprinted by Dover Publ. New York 1974.Google Scholar
  24. [24]
    Arnold V. I.,Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1978.Google Scholar
  25. [25]
    Kac M.,Probability and Related Topics in Physical Sciences, Interscience, London, 1959.Google Scholar
  26. [26]
    Perron O.,Die Stabilitätsfrage bei Differentialgleichungen, Math. Zeit.32, p. 703–728, 1930.CrossRefGoogle Scholar
  27. [27]
    Halmos P. R.,Lectures on Ergodic Theory, Publ. of the Math. Soc. of Japan, Tokyo, 1956. Reprinted by Chelsea Publ. Comp. N. Y., 1960.Google Scholar
  28. [28]
    Rochlin V. A.,Selected Topics from the Metric Theory of Dynamical Systems (in Russian), Uspekhi Mat. Nauk.4, 2, p. 57–128 1949. English Transl. in Amer. Math. Soc. Trans.49, p. 171 – 240 1965.Google Scholar

Copyright information

© Pitagora Editrice Bologna 1980

Authors and Affiliations

  • Giancarlo Benettin
    • 1
  • Luigi Galgani
    • 2
  • Antonio Giorgilli
    • 2
  • Jean-Marie Strelcyn
    • 3
  1. 1.Istituto di Fisica dell'UniversitàPadova
  2. 2.Istituto di Fisica e Istituto di Matematica dell'UniversitàMilano
  3. 3.Département de Mathématiques, Centre Scientifique et PolytecniqueUniversité de Paris-NordVillateneuseFrance

Personalised recommendations