Advances in Computational Mathematics

, Volume 6, Issue 1, pp 207–226 | Cite as

A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type

  • J. Crank
  • P. Nicolson


Differential Equation Partial Differential Equation Numerical Evaluation Practical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.M.P. Memo. No. 131. IM: Title “On the solution of certain boundary problems”.Google Scholar
  2. [2]
    C. H. Bamford, J. Crank and D. H. Malan, Proc. Cambridge Phil. Soc. 42 (1946) 166.Google Scholar
  3. [3]
    N. R. Eyres, D. R. Hartree et al., Philos. Trans. A 240 (1946) 1.Google Scholar
  4. [4]
    D. R. Hartree and J. R. Womersley, Proc. Roy. Soc. A 161 (1937) 353.Google Scholar
  5. [5]
    R. Jackson, R. J. Sarjant, J. B. Wagstaff, N. R. Eyres, D. R. Hartree and J. Ingham, The Iron and Steel Institute, Paper No. 15/1944 of the Alloy Steels Research Committee (1944).Google Scholar
  6. [6]
    Levy and Baggott,Numerical Studies in Differential Equations, Chapter IV.Google Scholar
  7. [7]
    A. N. Lowan, Amer. J. Math. 56(3) (1934) 396.MathSciNetGoogle Scholar
  8. [8]
    L. F. Richardson, Philos. Trans. A 210 (1910) 307.Google Scholar
  9. [9]
    L. F. Richardson, Philos. Trans. A 226 (1927) 299.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • J. Crank
    • 1
    • 2
  • P. Nicolson
    • 1
    • 2
  1. 1.The Mathematical LaboratoryCambridge
  2. 2.Girton CollegeCambridge

Personalised recommendations