Advances in Computational Mathematics

, Volume 6, Issue 1, pp 207–226 | Cite as

A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type

  • J. Crank
  • P. Nicolson

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.M.P. Memo. No. 131. IM: Title “On the solution of certain boundary problems”.Google Scholar
  2. [2]
    C. H. Bamford, J. Crank and D. H. Malan, Proc. Cambridge Phil. Soc. 42 (1946) 166.Google Scholar
  3. [3]
    N. R. Eyres, D. R. Hartree et al., Philos. Trans. A 240 (1946) 1.Google Scholar
  4. [4]
    D. R. Hartree and J. R. Womersley, Proc. Roy. Soc. A 161 (1937) 353.Google Scholar
  5. [5]
    R. Jackson, R. J. Sarjant, J. B. Wagstaff, N. R. Eyres, D. R. Hartree and J. Ingham, The Iron and Steel Institute, Paper No. 15/1944 of the Alloy Steels Research Committee (1944).Google Scholar
  6. [6]
    Levy and Baggott,Numerical Studies in Differential Equations, Chapter IV.Google Scholar
  7. [7]
    A. N. Lowan, Amer. J. Math. 56(3) (1934) 396.MathSciNetGoogle Scholar
  8. [8]
    L. F. Richardson, Philos. Trans. A 210 (1910) 307.Google Scholar
  9. [9]
    L. F. Richardson, Philos. Trans. A 226 (1927) 299.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • J. Crank
    • 1
    • 2
  • P. Nicolson
    • 1
    • 2
  1. 1.The Mathematical LaboratoryCambridge
  2. 2.Girton CollegeCambridge

Personalised recommendations